
Computation

Visualization

Programming

MATLAB Function Reference
Volume 3: P - Z
Version 6

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 3: P - Z
 COPYRIGHT 1984 - 2001 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing (for MATLAB 5)
June 1997 Revised for 5.1 (online version)
October 1997 Revised for 5.2 (online version)
January 1999 Revised for Release 11 (online version)
June 1999 Printed for Release 11
March 2000 Beta (online only)
June 2001 Revised for 6.1 (online version)

i

Contents

1
Functions By Category

Development Environment . 1-3
Starting and Quitting . 1-3
Command Window . 1-3
Getting Help . 1-4
Workspace, File, and Search Path . 1-4
Programming Tools . 1-5
System . 1-6
Performance Improvement Tools and Techniques 1-6

Mathematics . 1-7
Arrays and Matrices . 1-8
Linear Algebra . 1-10
Elementary Math . 1-12
Data Analysis and Fourier Transforms 1-14
Polynomials . 1-15
Interpolation and Computational Geometry 1-16
Coordinate System Conversion . 1-17
Nonlinear Numerical Methods . 1-17
Specialized Math . 1-18
Sparse Matrices . 1-19
Math Constants . 1-21

Programming and Data Types . 1-22
Data Types . 1-22
Arrays . 1-26
Operators and Operations . 1-27
Programming in MATLAB . 1-30

File I/O . 1-34
Filename Construction . 1-34
Opening, Loading, Saving Files . 1-34
Low-Level File I/O . 1-35
Text Files . 1-35
Spreadsheets . 1-35

ii Contents

Scientific Data . 1-36
Audio and Audio/Video . 1-36
Images . 1-37

Graphics . 1-38
Basic Plots and Graphs . 1-38
Annotating Plots . 1-38
Specialized Plotting . 1-39
Bit-Mapped Images . 1-41
Printing . 1-41
Handle Graphics . 1-41

3-D Visualization . 1-43
Surface and Mesh Plots . 1-43
View Control . 1-44
Lighting . 1-45
Transparency . 1-46
Volume Visualization . 1-46

Creating Graphical User Interfaces . 1-47
Predefined Dialog Boxes . 1-47
Deploying User Interfaces . 1-48
Developing User Interfaces . 1-48
User Interface Objects . 1-48
Finding and Identifying Objects . 1-48
GUI Utility Functions . 1-48
Controlling Program Execution . 1-49

2
Alphabetical List of Functions

1

Functions By Category

1 Functions By Category

1-2

The MATLAB Function Reference contains descriptions of all MATLAB
commands and functions.

If you know the name of a function, use the “Alphabetical List of Functions” to
find the reference page.

If you do not know the name of a function, select a category from the following
table to see a list of related functions. You can also browse these tables to see
what functionality MATLAB provides.

See Simulink, Stateflow, Real-Time Workshop, and the individual toolboxes for
lists of their functions

Category Description

Development Environment Startup, Command Window, help, editing
and debugging, other general functions

Mathematics Arrays and matrices, linear algebra, data
analysis, other areas of mathematics

Programming and Data
Types

Function/expression evaluation, program
control, function handles, object oriented
programming, error handling, operators,
data types

File I/O General and low-level file I/O, plus specific
file formats, like audio, spreadsheet, HDF,
images

Graphics Line plots, annotating graphs, specialized
plots, images, printing, Handle Graphics

3-D Visualization Surface and mesh plots, view control,
lighting and transparency, volume
visualization.

Creating Graphical User
Interface

GUIDE, programming graphical user
interfaces.

External Interfaces Java, ActiveX, Serial Port functions.

Development Environment

1-3

Development Environment
General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

Starting and Quitting
exit Terminate MATLAB (same as quit)
finish MATLAB termination M-file
matlab Start MATLAB (UNIX systems only)
matlabrc MATLAB startup M-file for single user systems or administrators
quit Terminate MATLAB
startup MATLAB startup M-file for user-defined options

Command Window
clc Clear Command Window
diary Save session to file
dos Execute DOS command and return result
format Control display format for output
home Move cursor to upper left corner of Command Window
more Control paged output for Command Window

Category Description

“Starting and Quitting” Startup and shutdown options

“Command Window” Controlling Command Window

“Getting Help” Methods for finding information

“Workspace, File, and
Search Path”

File, search path, variable management

“Programming Tools” Editing and debugging, source control, profiling

“System” Identifying current computer, license, or product
version

“Performance
Improvement Tools
and Techniques”

Improving and assessing performance, e.g.,
memory use

1 Functions By Category

1-4

notebook Open M-book in Microsoft Word (Windows only)
unix Execute UNIX command and return result

Getting Help
doc Display online documentation in MATLAB Help browser
docopt Location of help file directory for UNIX platforms
help Display help for MATLAB functions in Command Window
helpbrowser Display Help browser for access to extensive online help
helpwin Display M-file help, with access to M-file help for all functions
info Display information about The MathWorks or products
lookfor Search for specified keyword in all help entries
support Open MathWorks Technical Support Web page
web Point Help browser or Web browser to file or Web site
whatsnew Display information about MATLAB and toolbox releases

Workspace, File, and Search Path
• “Workspace”

• “File”

• “Search Path”

Workspace
assignin Assign value to workspace variable
clear Remove items from workspace, freeing up system memory
evalin Execute string containing MATLAB expression in a workspace
exist Check if variable or file exists
openvar Open workspace variable in Array Editor for graphical editing
pack Consolidate workspace memory
which Locate functions and files
who, whos List variables in the workspace
workspace Display Workspace browser, a tool for managing the workspace

File
cd Change working directory
copyfile Copy file
delete Delete files or graphics objects
dir Display directory listing
exist Check if a variable or file exists
filebrowser Display Current Directory browser, a tool for viewing files
lookfor Search for specified keyword in all help entries

Development Environment

1-5

ls List directory on UNIX
matlabroot Return root directory of MATLAB installation
mkdir Make new directory
pwd Display current directory
rehash Refresh function and file system caches
type List file
what List MATLAB specific files in current directory
which Locate functions and files

See also “File I/O” functions.

Search Path
addpath Add directories to MATLAB search path
genpath Generate path string
partialpath Partial pathname
path View or change the MATLAB directory search path
pathtool Open Set Path dialog box to view and change MATLAB path
rmpath Remove directories from MATLAB search path

Programming Tools
• “Editing and Debugging”

• “Source Control”

• “Profiling”

Editing and Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints in M-file function
dbtype List M-file with line numbers
dbup Change local workspace context
edit Edit or create M-file
keyboard Invoke the keyboard in an M-file

1 Functions By Category

1-6

Source Control
checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system
customverctrlAllow custom source control system
undocheckout Undo previous checkout from source control system

Profiling
profile Optimize performance of M-file code
profreport Generate profile report

System
computer Identify information about computer on which MATLAB is running
javachk Generate error message based on Java feature support
license Show license number for MATLAB
usejava Determine if a Java feature is supported in MATLAB
ver Display version information for MathWorks products
version Get MATLAB version number

Performance Improvement Tools and Techniques
memory Help for memory limitations
pack Consolidate workspace memory
profile Optimize performance of M-file code
profreport Generate profile report
rehash Refresh function and file system caches
sparse Create sparse matrix
zeros Create array of all zeros

Mathematics

1-7

Mathematics
Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

Category Description

“Arrays and Matrices” Basic array operators and operations, creation of
elementary and specialized arrays and matrices

“Linear Algebra” Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

“Elementary Math” Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

“Data Analysis and
Fourier Transforms”

Descriptive statistics, finite differences,
correlation, filtering and convolution, fourier
transforms

“Polynomials” Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem,
curve fitting, partial fraction expansion

“Interpolation and
Computational
Geometry”

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

“Coordinate System
Conversion”

Conversions between Cartesian and polar or
spherical coordinates

“Nonlinear Numerical
Methods”

Differential equations, optimization, integration

“Specialized Math” Airy, Bessel, Jacobi, Legendre, beta, elliptic,
error, exponential integral, gamma functions

1 Functions By Category

1-8

Arrays and Matrices
• “Basic Information”

• “Operators”

• “Operations and Manipulation”

• “Elementary Matrices and Arrays”

• “Specialized Matrices”

Basic Information
disp Display array
display Display array
isempty True for empty matrix
isequal True if arrays are identical
islogical True for logical array
isnumeric True for numeric arrays
issparse True for sparse matrix
length Length of vector
ndims Number of dimensions
numel Number of elements
size Size of matrix

Operators
+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
^ Matrix power
\ Backslash or left matrix divide

“Sparse Matrices” Elementary sparse matrices, operations,
reordering algorithms, linear algebra, iterative
methods, tree operations

“Math Constants” Pi, imaginary unit, infinity, Not-a-Number,
largest and smallest positive floating point
numbers, floating point relative accuracy

Category Description

Mathematics

1-9

/ Slash or right matrix divide
' Transpose
.' Nonconjugated transpose
.* Array multiplication (element-wise)
.^ Array power (element-wise)
.\ Left array divide (element-wise)
./ Right array divide (element-wise)

Operations and Manipulation
: (colon) Index into array, rearrange array
blkdiag Block diagonal concatenation
cat Concatenate arrays
cross Vector cross product
cumprod Cumulative product
cumsum Cumulative sum
diag Diagonal matrices and diagonals of matrix
dot Vector dot product
end Last index
find Find indices of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip matrix along specified dimension
horzcat Horizontal concatenation
ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product
max Maximum elements of array
min Minimum elements of array
permute Rearrange dimensions of multidimensional array
prod Product of array elements
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
sort Sort elements in ascending order
sortrows Sort rows in ascending order
sum Sum of array elements
sqrtm Matrix square root
sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix
triu Upper triangular part of matrix
vertcat Vertical concatenation

1 Functions By Category

1-10

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

Elementary Matrices and Arrays
: (colon) Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
diag Diagonal matrices and diagonals of matrix
eye Identity matrix
freqspace Frequency spacing for frequency response
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
repmat Replicate and tile array
zeros Create array of all zeros

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra
• “Matrix Analysis”

• “Linear Equations”

• “Eigenvalues and Singular Values”

• “Matrix Logarithms and Exponentials”

• “Factorization”

Mathematics

1-11

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant
norm Matrix or vector norm
normest Estimate matrix 2-norm
null Null space
orth Orthogonalization
rank Matrix rank
rcond Matrix reciprocal condition number estimate
rref Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
\ and / Linear equation solution
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cond Condition number with respect to inversion
condest 1-norm condition number estimate
funm Evaluate general matrix function
inv Matrix inverse
lscov Least squares solution in presence of known covariance
lsqnonneg Nonnegative least squares
lu LU matrix factorization
luinc Incomplete LU factorization
pinv Moore-Penrose pseudoinverse of matrix
qr Orthogonal-triangular decomposition
rcond Matrix reciprocal condition number estimate

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
condeig Condition number with respect to eigenvalues
eig Eigenvalues and eigenvectors
eigs Eigenvalues and eigenvectors of sparse matrix
gsvd Generalized singular value decomposition
hess Hessenberg form of matrix
poly Polynomial with specified roots
polyeig Polynomial eigenvalue problem
qz QZ factorization for generalized eigenvalues
rsf2csf Convert real Schur form to complex Schur form

1 Functions By Category

1-12

schur Schur decomposition
svd Singular value decomposition
svds Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials
expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root

Factorization
balance Diagonal scaling to improve eigenvalue accuracy
cdf2rdf Complex diagonal form to real block diagonal form
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cholupdate Rank 1 update to Cholesky factorization
lu LU matrix factorization
luinc Incomplete LU factorization
planerot Givens plane rotation
qr Orthogonal-triangular decomposition
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization
qrupdate Rank 1 update to QR factorization
qz QZ factorization for generalized eigenvalues
rsf2csf Real block diagonal form to complex diagonal form

Elementary Math
• “Trigonometric”

• “Exponential”

• “Complex”

• “Rounding and Remainder”

• “Discrete Math (e.g., Prime Factors)”

Trigonometric
acos, acosh Inverse cosine and inverse hyperbolic cosine
acot, acoth Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch Inverse cosecant and inverse hyperbolic cosecant
asec, asech Inverse secant and inverse hyperbolic secant
asin, asinh Inverse sine and inverse hyperbolic sine

Mathematics

1-13

atan, atanh Inverse tangent and inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
cos, cosh Cosine and hyperbolic cosine
cot, coth Cotangent and hyperbolic cotangent
csc, csch Cosecant and hyperbolic cosecant
sec, sech Secant and hyperbolic secant
sin, sinh Sine and hyperbolic sine
tan, tanh Tangent and hyperbolic tangent

Exponential
exp Exponential
log Natural logarithm
log2 Base 2 logarithm and dissect floating-point numbers into exponent and

mantissa
log10 Common (base 10) logarithm
nextpow2 Next higher power of 2
pow2 Base 2 power and scale floating-point number
sqrt Square root

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
cplxpair Sort numbers into complex conjugate pairs
i Imaginary unit
imag Complex imaginary part
isreal True for real array
j Imaginary unit
real Complex real part
unwrap Unwrap phase angle

Rounding and Remainder
fix Round towards zero
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus (signed remainder after division)
rem Remainder after division
sign Signum

1 Functions By Category

1-14

Discrete Math (e.g., Prime Factors)
factor Prime factors
factorial Factorial function
gcd Greatest common divisor
isprime True for prime numbers
lcm Least common multiple
nchoosek All combinations of N elements taken K at a time
perms All possible permutations
primes Generate list of prime numbers
rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms
• “Basic Operations”

• “Finite Differences”

• “Correlation”

• “Filtering and Convolution”

• “Fourier Transforms”

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of array
prod Product of array elements
sort Sort elements in ascending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

Mathematics

1-15

Correlation
corrcoef Correlation coefficients
cov Covariance matrix
subspace Angle between two subspaces

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
convn N-dimensional convolution
deconv Deconvolution and polynomial division
detrend Linear trend removal
filter Filter data with infinite impulse response (IIR) or finite impulse response

(FIR) filter
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
fft One-dimensional fast Fourier transform
fft2 Two-dimensional fast Fourier transform
fftn N-dimensional discrete Fourier Transform
fftshift Shift DC component of fast Fourier transform to center of spectrum
ifft Inverse one-dimensional fast Fourier transform
ifft2 Inverse two-dimensional fast Fourier transform
ifftn Inverse multidimensional fast Fourier transform
ifftshift Inverse fast Fourier transform shift
nextpow2 Next power of two
unwrap Correct phase angles

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial coefficients
roots Polynomial roots

1 Functions By Category

1-16

Interpolation and Computational Geometry
• “Interpolation”

• “Delaunay Triangulation and Tessellation”

• “Convex Hull”

• “Voronoi Diagrams”

• “Domain Generation”

Interpolation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using fast Fourier transform method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
mkpp Make piecewise polynomial
ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearchn Multidimensional closest simplex search
unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation
delaunay Delaunay triangulation
delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot Two-dimensional triangular plot
trisurf Triangular surface plot
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

Mathematics

1-17

Convex Hull
convhull Convex hull
convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams
dsearch Search for nearest point
patch Create patch graphics object
plot Linear two-dimensional plot
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams

Domain Generation
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation

Coordinate System Conversion

Cartesian
cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods
• “Ordinary Differential Equations (IVP)”

• “Boundary Value Problems”

• “Partial Differential Equations”

• “Optimization”

• “Numerical Integration (Quadrature)”

Ordinary Differential Equations (IVP)
deval Evaluate solution of differential equation problem
ode113 Solve non-stiff differential equations, variable order method
ode15s Solve stiff ODEs and DAEs Index 1, variable order method

1 Functions By Category

1-18

ode23 Solve non-stiff differential equations, low order method
ode23s Solve stiff differential equations, low order method
ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal rule
ode23tb Solve stiff differential equations, low order method
ode45 Solve non-stiff differential equations, medium order method
odeget Get ODE options parameters
odeset Create/alter ODE options structure

Boundary Value Problems
bvp4c Solve two-point boundary value problems for ODEs by collocation
bvpset Create/alter BVP options structure
bvpget Get BVP options parameters
deval Evaluate solution of differential equation problem

Partial Differential Equations
pdepe Solve initial-boundary value problems for parabolic-elliptic PDEs
pdeval Evaluates by interpolation solution computed by pdepe

Optimization
fminbnd Scalar bounded nonlinear function minimization
fminsearch Multidimensional unconstrained nonlinear minimization, by

Nelder-Mead direct search method
fzero Scalar nonlinear zero finding
lsqnonneg Linear least squares with nonnegativity constraints
optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

Numerical Integration (Quadrature)
quad Numerically evaluate integral, adaptive Simpson quadrature (low order)
quadl Numerically evaluate integral, adaptive Lobatto quadrature (high order)
dblquad Numerically evaluate double integral

Specialized Math
airy Airy functions
besselh Bessel functions of third kind (Hankel functions)
besseli Modified Bessel function of first kind
besselj Bessel function of first kind
besselk Modified Bessel function of second kind
bessely Bessel function of second kind
beta Beta function

Mathematics

1-19

betainc Incomplete beta function
betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of first and second kind
erf Error function
erfc Complementary error function
erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
legendre Associated Legendre functions

Sparse Matrices
• “Elementary Sparse Matrices”

• “Full to Sparse Conversion”

• “Working with Sparse Matrices”

• “Reordering Algorithms”

• “Linear Algebra”

• “Linear Equations (Iterative Methods)”

• “Tree Operations”

Elementary Sparse Matrices
spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse random symmetric matrix

Full to Sparse Conversion
find Find indices of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import from sparse matrix external format

1 Functions By Category

1-20

Working with Sparse Matrices
issparse True for sparse matrix
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero matrix elements
spones Replace nonzero sparse matrix elements with ones
spparms Set parameters for sparse matrix routines
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd Column minimum degree permutation
colperm Column permutation
dmperm Dulmage-Mendelsohn permutation
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symmmd Symmetric minimum degree permutation
symrcm Symmetric reverse Cuthill-McKee permutation

Linear Algebra
cholinc Incomplete Cholesky factorization
condest 1-norm condition number estimate
eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization
normest Estimate matrix 2-norm
sprank Structural rank
svds Singular values and vectors of sparse matrix

Linear Equations (Iterative Methods)
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
gmres Generalized Minimum Residual method
lsqr LSQR implementation of Conjugate Gradients on Normal Equations
minres Minimum Residual method
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
spaugment Form least squares augmented system
symmlq Symmetric LQ method

Mathematics

1-21

Tree Operations
etree Elimination tree
etreeplot Plot elimination tree
gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity, ∞
j Imaginary unit
NaN Not-a-Number
pi Ratio of a circle’s circumference to its diameter, π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number

1 Functions By Category

1-22

Programming and Data Types
Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB
programs.

Data Types
• “Numeric”

• “Characters and Strings”

• “Structures”

• “Cell Arrays”

• “Data Type Conversion”

Numeric
[] Array constructor
cat Concatenate arrays
class Return object’s class name (e.g., numeric)
find Find indices and values of nonzero array elements
ipermute Inverse permute dimensions of multidimensional array
isa Detect object of given class (e.g., numeric)
isequal Determine if arrays are numerically equal
isnumeric Determine if item is numeric array
isreal Determine if all array elements are real numbers

Category Description

“Data Types” Numeric, character, structures, cell arrays,
and data type conversion

“Arrays” Basic array operations and manipulation

“Operators and Operations” Special characters and arithmetic,
bit-wise, relational, logical, set, date and
time operations

“Programming in MATLAB” M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

Programming and Data Types

1-23

permute Rearrange dimensions of multidimensional array
reshape Reshape array
squeeze Remove singleton dimensions from array
zeros Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings Describes MATLAB string handling

Creating and Manipulating Strings

blanks Create string of blanks
char Create character array (string)
cellstr Create cell array of strings from character array
datestr Convert to date string format
deblank Strip trailing blanks from the end of string
lower Convert string to lower case
sprintf Write formatted data to string
sscanf Read string under format control
strcat String concatenation
strjust Justify character array
strread Read formatted data from string
strrep String search and replace
strvcat Vertical concatenation of strings
upper Convert string to upper case

Comparing and Searching Strings

class Return object’s class name (e.g., char)
findstr Find string within another, longer string
isa Detect object of given class (e.g., char)
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isletter Detect array elements that are letters of the alphabet
isspace Detect elements that are ASCII white spaces
strcmp Compare strings
strcmpi Compare strings, ignoring case
strfind Find one string within another
strmatch Find possible matches for string
strncmp Compare first n characters of strings
strncmpi Compare first n characters of strings, ignoring case
strtok First token in string

1 Functions By Category

1-24

Evaluating String Expressions

eval Execute string containing MATLAB expression
evalc Evaluate MATLAB expression with capture
evalin Execute string containing MATLAB expression in workspace

Structures
cell2struct Cell array to structure array conversion
class Return object’s class name (e.g., struct)
deal Deal inputs to outputs
fieldnames Field names of structure
getfield Get field of structure array
isa Detect object of given class (e.g., struct)
isequal Determine if arrays are numerically equal
isfield Determine if item is structure array field
isstruct Determine if item is structure array
rmfield Remove structure fields
setfield Set field of structure array
struct Create structure array
struct2cell Structure to cell array conversion

Cell Arrays
{ } Construct cell array
cell Construct cell array
cellfun Apply function to each element in cell array
cellstr Create cell array of strings from character array
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display structure of cell arrays
class Return object’s class name (e.g., cell)
deal Deal inputs to outputs
isa Detect object of given class (e.g., cell)
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
isequal Determine if arrays are numerically equal
num2cell Convert numeric array into cell array
struct2cell Structure to cell array conversion

Data Type Conversion

Numeric

double Convert to double-precision

Programming and Data Types

1-25

int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
single Convert to single-precision
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer

String to Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number
str2num Convert string to number

Numeric to String

char Convert to character array (string)
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string
mat2str Convert a matrix to string
num2str Convert number to string

Other Conversions

cell2struct Convert cell array to structure array
datestr Convert serial date number to string
func2str Convert function handle to function name string
logical Convert numeric to logical array
num2cell Convert a numeric array to cell array
str2func Convert function name string to function handle
struct2cell Convert structure to cell array

Determine Data Type

is* Detect state
isa Detect object of given MATLAB class or Java class
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isfield Determine if item is character array

1 Functions By Category

1-26

isjava Determine if item is Java object
islogical Determine if item is logical array
isnumeric Determine if item is numeric array
isobject Determine if item is MATLAB OOPs object
isstruct Determine if item is MATLAB structure array

Arrays
• “Array Operations”

• “Basic Array Information”

• “Array Manipulation”

• “Elementary Arrays”

Array Operations
[] Array constructor
, Array row element separator
; Array column element separator
: Specify range of array elements
end Indicate last index of array
+ Addition or unary plus
- Subtraction or unary minus
.* Array multiplication
./ Array right division
.\ Array left division
.^ Array power
.' Array (nonconjugated) transpose

Basic Array Information
disp Display text or array
display Overloaded method to display text or array
isempty Determine if array is empty
isequal Determine if arrays are numerically equal
isnumeric Determine if item is numeric array
islogical Determine if item is logical array
length Length of vector
ndims Number of array dimensions
numel Number of elements in matrix or cell array
size Array dimensions

Programming and Data Types

1-27

Array Manipulation
: Specify range of array elements
blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays
find Find indices and values of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip array along specified dimension
horzcat Horizontal concatenation
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
shiftdim Shift dimensions
sort Sort elements in ascending order
sortrows Sort rows in ascending order
squeeze Remove singleton dimensions
sub2ind Single index from subscripts
vertcat Horizontal concatenation

Elementary Arrays
: Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create array of all zeros

Operators and Operations
• “Special Characters”

• “Arithmetic Operations”

• “Bit-wise Operations”

• “Relational Operations”

1 Functions By Category

1-28

• “Logical Operations”

• “Set Operations”

• “Date and Time Operations”

Special Characters
: Specify range of array elements
() Pass function arguments, or prioritize operations
[] Construct array
{ } Construct cell array
. Decimal point, or structure field separator
... Continue statement to next line
, Array row element separator
; Array column element separator
% Insert comment line into code
! Command to operating system
= Assignment

Arithmetic Operations
+ Plus
- Minus
. Decimal point
= Assignment
* Matrix multiplication
/ Matrix right division
\ Matrix left division
^ Matrix power
' Matrix transpose
.* Array multiplication (element-wise)
./ Array right division (element-wise)
.\ Array left division (element-wise)
.^ Array power (element-wise)
.' Array transpose

Bit-wise Operations
bitand Bit-wise AND
bitcmp Bit-wise complement
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit at specified position
bitshift Bit-wise shift
bitget Get bit at specified position

Programming and Data Types

1-29

bitxor Bit-wise XOR

Relational Operations
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

Logical Operations
& Logical AND
| Logical OR
~ Logical NOT
all Test to determine if all elements are nonzero
any Test for any nonzero elements
find Find indices and values of nonzero elements
is* Detect state
isa Detect object of given class
iskeyword Determine if string is MATLAB keyword
isvarname Determine if string is valid variable name
logical Convert numeric values to logical
xor Logical EXCLUSIVE OR

Set Operations
intersect Set intersection of two vectors
ismember Detect members of set
setdiff Return set difference of two vectors
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of vector

Date and Time Operations
calendar Calendar for specified month
clock Current time as date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Convert serial date number to string
datevec Date components
eomday End of month

1 Functions By Category

1-30

etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Programming in MATLAB
• “M-File Functions and Scripts”

• “Evaluation of Expressions and Functions”

• “Variables and Functions in Memory”

• “Control Flow”

• “Function Handles”

• “Object-Oriented Programming”

• “Error Handling”

• “MEX Programming”

M-File Functions and Scripts
() Pass function arguments
% Insert comment line into code
... Continue statement to next line
depfun List dependent functions of M-file or P-file
depdir List dependent directories of M-file or P-file
function Function M-files
input Request user input
inputname Input argument name
mfilename Name of currently running M-file
nargin Number of function input arguments
nargout Number of function output arguments
nargchk Check number of input arguments
nargoutchk Validate number of output arguments
pcode Create preparsed pseudocode file (P-file)
script Describes script M-file
varargin Accept variable number of arguments
varargout Return variable number of arguments

Evaluation of Expressions and Functions
builtin Execute builtin function from overloaded method
cellfun Apply function to each element in cell array
eval Interpret strings containing MATLAB expressions

Programming and Data Types

1-31

evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace
feval Evaluate function
iskeyword Determine if item is MATLAB keyword
isvarname Determine if item is valid variable name
pause Halt execution temporarily
run Run script that is not on current path
script Describes script M-file
symvar Determine symbolic variables in expression
tic, toc Stopwatch timer

Variables and Functions in Memory
assignin Assign value to workspace variable
global Define global variables
inmem Return names of functions in memory
isglobal Determine if item is global variable
mislocked True if M-file cannot be cleared
mlock Prevent clearing M-file from memory
munlock Allow clearing M-file from memory
pack Consolidate workspace memory
persistent Define persistent variable
rehash Refresh function and file system caches

Control Flow
break Terminate execution of for loop or while loop
case Case switch
catch Begin catch block
continue Pass control to next iteration of for or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminate conditional statements, or indicate last index
error Display error messages
for Repeat statements specific number of times
if Conditionally execute statements
otherwise Default part of switch statement
return Return to invoking function
switch Switch among several cases based on expression
try Begin try block
while Repeat statements indefinite number of times

Function Handles
class Return object’s class name (e.g. function_handle)

1 Functions By Category

1-32

feval Evaluate function
function_handle

Describes function handle data type
functions Return information about function handle
func2str Constructs function name string from function handle
isa Detect object of given class (e.g. function_handle)
isequal Determine if function handles are equal
str2func Constructs function handle from function name string

Object-Oriented Programming

MATLAB Classes and Objects

class Create object or return class of object
fieldnames List public fields belonging to object,
inferiorto Establish inferior class relationship
isa Detect object of given class
isobject Determine if item is MATLAB OOPs object
loadobj User-defined extension of load function for user objects
methods Display method names
methodsview Displays information on all methods implemented by class
saveobj User-defined extension of save function for user objects
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B
subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I} and A.field
substruct Create structure argument for subsasgn or subsref
superiorto Establish superior class relationship

Java Classes and Objects

cell Convert Java array object to cell array
class Return class name of Java object
clear Clear Java packages import list
depfun List Java classes used by M-file
exist Detect if item is Java class
fieldnames List public fields belonging to object,
import Add package or class to current Java import list
inmem List names of Java classes loaded into memory
isa Detect object of given class
isjava Determine whether object is Java object
javaArray Constructs Java array
javaMethod Invokes Java method
javaObject Constructs Java object
methods Display methods belonging to class

Programming and Data Types

1-33

methodsview Display information on all methods implemented by class
which Display package and class name for method

Error Handling
catch Begin catch block of try/catch statement
error Display error message
ferror Query MATLAB about errors in file input or output
lasterr Return last error message generated by MATLAB
lastwarn Return last warning message issued by MATLAB
try Begin try block of try/catch statement
warning Display warning message

MEX Programming
dbmex Enable MEX-file debugging
inmem Return names of currently loaded MEX-files
mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1 Functions By Category

1-34

File I/O
Functions to read and write data to files of different format types.

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction
fileparts Return parts of filename
filesep Return directory separator for this platform
fullfile Build full filename from parts
tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

Opening, Loading, Saving Files
importdata Load data from various types of files
load Load all or specific data from MAT or ASCII file

Category Description

“Filename Construction” Get path, directory, filename
information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between
files and MATLAB workspace

“Low-Level File I/O” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted I/O to text
files

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions;
SparcStation, Wave, AVI files

“Images” Graphics files

File I/O

1-35

open Open files of various types using appropriate editor or program
save Save all or specific data to MAT or ASCII file

Low-Level File I/O
fclose Close one or more open files
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
fgetl Return next line of file as string without line terminator(s)
fgets Return next line of file as string with line terminator(s)
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file
frewind Rewind open file
fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

Text Files
csvread Read numeric data from text file, using comma delimiter
csvwrite Write numeric data to text file, using comma delimiter
dlmread Read numeric data from text file, specifying your own delimiter
dlmwrite Write numeric data to text file, specifying your own delimiter
textread Read data from text file, specifying format for each value

Spreadsheets

Microsoft Excel Functions
xlsfinfo Determine if file contains Microsoft Excel (.xls) spreadsheet
xlsread Read Microsoft Excel spreadsheet file (.xls)

Lotus123 Functions
wk1read Read Lotus123 WK1 spreadsheet file into matrix
wk1write Write matrix to Lotus123 WK1 spreadsheet file

1 Functions By Category

1-36

Scientific Data

Common Data Format (CDF)
cdfinfo Return information about CDF file
cdfread Read CDF file

Flexible Image Transport System
fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)
hdf Interface to HDF files
hdfinfo Return information about HDF or HDF-EOS file
hdfread Read HDF file

Audio and Audio/Video
• “General”

• “SPARCstation-Specific Sound Functions”

• “Microsoft WAVE Sound Functions”

• “Audio Video Interleaved (AVI) Functions”

• “Microsoft Excel Functions”

• “Lotus123 Functions”

General
audioplayer Create audio player object
audiorecorderPerform real-time audio capture
beep Produce beep sound
lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

File I/O

1-37

Microsoft WAVE Sound Functions
wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

Audio Video Interleaved (AVI) Functions
addframe Add frame to AVI file
avifile Create new AVI file
aviinfo Return information about AVI file
aviread Read AVI file
close Close AVI file
movie2avi Create AVI movie from MATLAB movie

Images
imfinfo Return information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file

1 Functions By Category

1-38

Graphics
2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs
box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars
hold Hold current graph
loglog Plot using log-log scales
polar Polar coordinate plot
plot Plot vectors or matrices.
plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Annotating Plots
clabel Add contour labels to contour plot
datetick Date formatted tick labels

Category Description

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour
plots, function plotters

Bit-Mapped Images Display image object, read and write graphics
file, convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,
finding handles

Graphics

1-39

gtext Place text on 2-D graph using mouse
legend Graph legend for lines and patches
texlabel Produce the TeX format from character string
title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Specialized Plotting
• “Area, Bar, and Pie Plots”

• “Contour Plots”

• “Direction and Velocity Plots”

• “Discrete Data Plots”

• “Function Plots”

• “Histograms”

• “Polygons and Surfaces”

• “Scatter Plots”

Area, Bar, and Pie Plots
area Area plot
bar Vertical bar chart
barh Horizontal bar chart
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char
pie Pie plot
pie3 3-D pie plot

Contour Plots
contour Contour (level curves) plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter

Direction and Velocity Plots
comet Comet plot
comet3 3-D comet plot

1 Functions By Category

1-40

compass Compass plot
feather Feather plot
quiver Quiver (or velocity) plot
quiver3 3-D quiver (or velocity) plot

Discrete Data Plots
stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
fplot Plot a function

Histograms
hist Plot histograms
histc Histogram count
rose Plot rose or angle histogram

Polygons and Surfaces
convhull Convex hull
cylinder Generate cylinder
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
ellipsoid Generate ellipsoid
fill Draw filled 2-D polygons
fill3 Draw filled 3-D polygons in 3-space
inpolygon True for points inside a polygonal region
pcolor Pseudocolor (checkerboard) plot
polyarea Area of polygon
ribbon Ribbon plot
slice Volumetric slice plot
sphere Generate sphere

Graphics

1-41

tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
waterfall Waterfall plot

Scatter Plots
plotmatrix Scatter plot matrix
scatter Scatter plot
scatter3 3-D scatter plot

Bit-Mapped Images
frame2im Convert movie frame to indexed image
image Display image object
imagesc Scale data and display image object
imfinfo Information about graphics file
im2frame Convert image to movie frame
imread Read image from graphics file
imwrite Write image to graphics file
ind2rgb Convert indexed image to RGB image

Printing
orient Hardcopy paper orientation
pagesetupdlg Page position dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
printpreview Preview figure to be printed
saveas Save figure to graphic file

Handle Graphics
• Finding and Identifying Graphics Objects

• Object Creation Functions

• Figure Windows

• Axes Operations

Finding and Identifying Graphics Objects
allchild Find all children of specified objects
copyobj Make copy of graphics object and its children

1 Functions By Category

1-42

delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
findobj Find objects with specified property values
gca Get current Axes handle
gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing callback object
gco Return handle of current object
get Get object properties
ishandle True if value is valid object handle
rotate Rotate objects about specified origin and direction
set Set object properties

Object Creation Functions
axes Create axes object
figure Create figure (graph) windows
image Create image (2-D matrix)
light Create light object (illuminates Patch and Surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D rectangle)
surface Create surface (quadrilaterals)
text Create text object (character strings)
uicontextmenuCreate context menu (popup associated with object)

Figure Windows
capture Screen capture of the current figure
clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
drawnow Complete any pending drawing
gcf Get current figure handle
newplot Graphics M-file preamble for NextPlot property
refresh Refresh figure
saveas Save figure or model to desired output format

Axes Operations
axis Plot axis scaling and appearance
cla Clear Axes
gca Get current Axes handle
grid Grid lines for 2-D and 3-D plots

3-D Visualization

1-43

3-D Visualization
Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots
• Creating Surfaces and Meshes

• Domain Generation

• Color Operations

• Colormaps

Creating Surfaces and Meshes
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot

Category Description

Surface and Mesh Plots Plot matrices, visualize functions of two
variables, specify colormap

View Control Control the camera viewpoint, zooming,
rotation, aspect ratio, set axis limits

Lighting Add and control scene lighting

Transparency Specify and control object transparency

Volume Visualization Visualize gridded volume data

1 Functions By Category

1-44

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Color Operations
brighten Brighten or darken color map
caxis Pseudocolor axis scaling
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion
rgbplot Plot color map
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow color map
bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast
cool Shades of cyan and magenta color map
copper Linear copper-tone color map
flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map
hot Black-red-yellow-white color map
hsv Hue-saturation-value (HSV) color map
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
winter Shades of blue and green color map

View Control
• Controlling the Camera Viewpoint

• Setting the Aspect Ratio and Axis Limits

• Object Manipulation

3-D Visualization

1-45

• Selecting Region of Interest

Controlling the Camera Viewpoint
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
xlim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits

Object Manipulation
reset Reset axis or figure
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizeInteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest
dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

Lighting
camlight Cerate or position Light
light Light object creation function
lightangle Position light in sphereical coordinates
lighting Lighting mode
material Material reflectance mode

1 Functions By Category

1-46

Transparency
alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
curl Compute curl and angular velocity of vector field
divergence Compute divergence of vector field
flow Generate scalar volume data
interpstreamspeedInterpolate streamline vertices from vector-field magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and vector)

Creating Graphical User Interfaces

1-47

Creating Graphical User Interfaces
Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes
dialog Create dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Set ColorSpec using dialog box
uisetfont Set font using dialog box
waitbar Display wait bar
warndlg Create warning dialog box

Category Description

Predefined Dialog
Boxes

Dialog boxes for error, user input, waiting, etc.

Deploying User
Interfaces

Launching GUIs, creating the handles
structure

Developing User
Interfaces

Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding and
Identifying Objects

Finding object handles from callbacks

GUI Utility Functions Moving objects, text wrapping

Controlling Program
Execution

Wait and resume based on user input

1 Functions By Category

1-48

Deploying User Interfaces
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces
guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input
ginput Graphical input from a mouse or cursor
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects
menu Generate menu of choices for user input
uicontextmenuCreate context menu
uicontrol Create user interface control
uimenu Create user interface menu

Finding and Identifying Objects
findall Find all graphics objects
findfigs Display off-screen visible figure windows
gcbf Return handle of figure containing callback object
gcbo Return handle of object whose callback is executing

GUI Utility Functions
selectmoveresizeSelect, move, resize, or copy axes and uicontrol graphics objects
textwrap Return wrapped string matrix for given uicontrol

Creating Graphical User Interfaces

1-49

Controlling Program Execution
uiresume Resumes program execution halted with uiwait
uiwait Halts program execution, restart with uiresume

1 Functions By Category

1-50

2
Alphabetical List of
Functions

2 Alphabetical List of Functions

2-2

pack . 2-11
pagedlg . 2-13
pagesetupdlg . 2-14
pareto . 2-15
partialpath . 2-16
pascal . 2-17
patch . 2-18
Patch Properties . 2-30
path . 2-48
pathtool . 2-50
pause . 2-51
pbaspect . 2-52
pcg . 2-57
pchip . 2-61
pcode . 2-63
pcolor . 2-64
pdepe . 2-67
pdeval . 2-78
peaks . 2-79
perms . 2-80
permute . 2-81
persistent . 2-82
pi . 2-83
pie . 2-84
pie3 . 2-86
pinv . 2-88
planerot . 2-91
plot . 2-92
plot3 . 2-97
plotedit . 2-99
plotmatrix . 2-102
plotyy . 2-104
pol2cart . 2-106
polar . 2-107
poly . 2-109
polyarea . 2-111
polyder . 2-112

2-3

polyeig . 2-113
polyfit . 2-115
polyint . 2-118
polyval . 2-119
polyvalm . 2-121
pow2 . 2-123
ppval . 2-124
primes . 2-125
print, printopt . 2-126
printdlg . 2-140
printpreview . 2-141
prod . 2-142
profile . 2-143
profreport . 2-146
propedit . 2-148
propedit (activex) . 2-149
pwd . 2-150
qmr . 2-151
qr . 2-155
qrdelete . 2-159
qrinsert . 2-160
qrupdate . 2-161
quad, quad8 . 2-164
quadl . 2-167
questdlg . 2-169
quit . 2-171
quiver . 2-173
quiver3 . 2-175
qz . 2-177
rand . 2-179
randn . 2-181
randperm . 2-183
rank . 2-184
rat, rats . 2-185
rbbox . 2-188
rcond . 2-190
readasync . 2-191

2 Alphabetical List of Functions

2-4

real . 2-193
realmax . 2-194
realmin . 2-195
record . 2-196
rectangle . 2-198
rectangle properties . 2-205
rectint . 2-212
reducepatch . 2-213
reducevolume . 2-217
refresh . 2-219
rehash . 2-220
release (activex) . 2-221
rem . 2-222
repmat . 2-223
reset . 2-224
reshape . 2-225
residue . 2-227
return . 2-230
rgb2hsv . 2-231
rgbplot . 2-232
ribbon . 2-233
rmappdata . 2-235
rmfield . 2-236
rmpath . 2-237
root object . 2-238
Root Properties . 2-241
roots . 2-247
rose . 2-248
rosser . 2-250
rot90 . 2-251
rotate . 2-252
rotate3d . 2-254
round . 2-255
rref . 2-256
rsf2csf . 2-258
run . 2-260
runtime . 2-261

2-5

save . 2-262
save (activex) . 2-265
save (serial) . 2-266
saveas . 2-268
saveobj . 2-271
scatter . 2-272
scatter3 . 2-274
schur . 2-276
script . 2-278
sec, sech . 2-279
selectmoveresize . 2-281
semilogx, semilogy . 2-282
send (activex) . 2-284
serial . 2-285
serialbreak . 2-287
set . 2-288
set (activex) . 2-291
set (serial) . 2-292
setappdata . 2-294
setdiff . 2-295
setfield . 2-296
setstr . 2-298
setxor . 2-299
shading . 2-300
shiftdim . 2-303
shrinkfaces . 2-304
sign . 2-308
sin, sinh . 2-309
single . 2-311
size . 2-312
size (serial) . 2-314
slice . 2-315
smooth3 . 2-320
sort . 2-321
sortrows . 2-323
sound . 2-324
soundsc . 2-325

2 Alphabetical List of Functions

2-6

spalloc . 2-326
sparse . 2-327
spaugment . 2-329
spconvert . 2-330
spdiags . 2-332
speye . 2-335
spfun . 2-336
sph2cart . 2-338
sphere . 2-339
spinmap . 2-341
spline . 2-342
spones . 2-346
spparms . 2-347
sprand . 2-350
sprandn . 2-351
sprandsym . 2-352
sprank . 2-353
sprintf . 2-354
spy . 2-360
sqrt . 2-362
sqrtm . 2-363
squeeze . 2-366
sscanf . 2-367
stairs . 2-370
startup . 2-372
std . 2-373
stem . 2-375
stem3 . 2-377
stopasync . 2-379
str2double . 2-380
str2func . 2-381
str2mat . 2-382
str2num . 2-383
strcat . 2-384
strcmp . 2-386
strcmpi . 2-388
stream2 . 2-389

2-7

stream3 . 2-391
streamline . 2-393
streamparticles . 2-395
streamribbon . 2-399
streamslice . 2-405
streamtube . 2-410
strfind . 2-414
strings . 2-415
strjust . 2-417
strmatch . 2-418
strncmp . 2-419
strncmpi . 2-420
strread . 2-421
strrep . 2-425
strtok . 2-426
struct . 2-427
struct2cell . 2-429
strvcat . 2-430
sub2ind . 2-431
subplot . 2-433
subsasgn . 2-437
subsindex . 2-438
subspace . 2-439
subsref . 2-440
substruct . 2-441
subvolume . 2-442
sum . 2-444
superiorto . 2-445
support . 2-446
surf, surfc . 2-447
surf2patch . 2-451
surface . 2-453
Surface Properties . 2-461
surfl . 2-475
surfnorm . 2-478
svd . 2-480
svds . 2-483

2 Alphabetical List of Functions

2-8

switch . 2-485
symamd . 2-487
symbfact . 2-489
symmlq . 2-490
symmmd . 2-494
symrcm . 2-496
symvar . 2-498
tan, tanh . 2-499
tempdir . 2-501
tempname . 2-502
terminal . 2-503
tetramesh . 2-505
texlabel . 2-508
text . 2-510
Text Properties . 2-517
textread . 2-529
textwrap . 2-534
tic, toc . 2-535
title . 2-536
toeplitz . 2-538
trace . 2-539
trapz . 2-540
treelayout . 2-542
treeplot . 2-543
tril . 2-544
trimesh . 2-545
triplot . 2-546
trisurf . 2-548
triu . 2-549
try . 2-550
tsearch . 2-551
tsearchn . 2-552
type . 2-553
uicontextmenu . 2-554
uicontextmenu Properties . 2-557
uicontrol . 2-562
Uicontrol Properties . 2-570

2-9

uigetfile . 2-584
uiimport . 2-590
uimenu . 2-591
Uimenu Properties . 2-595
uint8, uint16, uint32 . 2-602
uiputfile . 2-603
uiresume, uiwait . 2-605
uisetcolor . 2-606
uisetfont . 2-607
undocheckout . 2-609
union . 2-610
unique . 2-611
unix . 2-613
unmkpp . 2-614
unwrap . 2-615
upper . 2-616
usejava . 2-617
vander . 2-618
var . 2-619
varargin, varargout . 2-620
vectorize . 2-622
ver . 2-623
version . 2-625
vertcat . 2-626
view . 2-628
viewmtx . 2-631
volumebounds . 2-635
voronoi . 2-637
voronoin . 2-641
waitbar . 2-644
waitfor . 2-646
waitforbuttonpress . 2-647
warndlg . 2-648
warning . 2-649
waterfall . 2-650
wavplay . 2-652
wavread . 2-654

2 Alphabetical List of Functions

2-10

wavrecord . 2-655
wavwrite . 2-656
web . 2-657
weekday . 2-659
what . 2-660
whatsnew . 2-662
which . 2-663
while . 2-667
whitebg . 2-670
who, whos . 2-671
wilkinson . 2-673
wk1read . 2-674
wk1write . 2-675
workspace . 2-676
xlabel, ylabel, zlabel . 2-677
xlim, ylim, zlim . 2-678
xlsfinfo . 2-680
xlsread . 2-681
xor . 2-685
zeros . 2-686
zoom . 2-687

pack

2-11

2packPurpose Consolidate workspace memory

Syntax pack
pack filename
pack('filename')

Description pack frees up needed space by compressing information into the minimum
memory required. You must run pack from a directory for which you have write
permission.

pack filename accepts an optional filename for the temporary file used to
hold the variables. Otherwise, it uses the file named pack.tmp. You must run
pack from a directory for which you have write permission.

pack('filename') is the function form of pack.

Remarks The pack function does not affect the amount of memory allocated to the
MATLAB process. You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When memory is
fragmented, there may be plenty of free space, but not enough contiguous
memory to store a new large variable.

If you get the Out of memory message from MATLAB, the pack function may
find you some free memory without forcing you to delete variables.

The pack function frees space by:

• Saving all variables on disk in a temporary file called pack.tmp

• Clearing all variables and functions from memory

• Reloading the variables back from pack.tmp

• Deleting the temporary file pack.tmp

If you use pack and there is still not enough free memory to proceed, you must
clear some variables. If you run out of memory often, you can allocate larger
matrices earlier in the MATLAB session and use these system-specific tips:

• UNIX: Ask your system manager to increase your swap space.

• Windows: Increase virtual memory using the Windows Control Panel.

pack

2-12

Examples Change the current directory to one that is writable, run pack, and return to
the previous directory.

cwd = pwd;
cd(tempdir);
pack
cd(cwd)

See Also clear

pagedlg

2-13

2pagedlgPurpose This function is obsolete. Use pagesetupdlg to display the page setup dialog.

Syntax pagedlg
pagedlg(fig)

Description pagedlg displays a page position dialog box for the current figure. The dialog
box enables you to set page layout properties.

pagedlg(fig) displays a page position dialog box for the figure identified by
the handle fig.

Remarks This dialog box enables you to set figure properties that determine how
MATLAB lays out the figure on the printed paper. See the dialog box help for
more information.

See Also The figure properties – PaperPosition, PaperOrientation, PaperUnits

pagesetupdlg

2-14

2pagesetupdlgPurpose Page position dialog box

Syntax dlg = pagesetupdlg(fig)

Description dlg = pagesetupdlg(fig) creates a dialog box from which a set of pagelayout
properties for the figure window, fig, can be set.

pagesetupdlg implements the "Page Setup..." option in the Figure File Menu.

Unlike pagedlg, pagesetupdlg currently only supports setting the layout for a
single figure. fig must be a single figure handle, not a vector of figures or a
simulink diagram.

See Also pagedlg, printpreview, printopt

pareto

2-15

2paretoPurpose Pareto chart

Syntax pareto(Y)
pareto(Y,names)
pareto(Y,X)
H = pareto(...)

Description Pareto charts display the values in the vector Y as bars drawn in descending
order.

pareto(Y) labels each bar with its element index in Y.

pareto(Y,names) labels each bar with the associated name in the string
matrix or cell array names.

pareto(Y,X) labels each bar with the associated value from X.

H = pareto(...) returns a combination of patch and line object handles.

See Also hist, bar

partialpath

2-16

2partialpathPurpose Partial pathname

Description A partial pathname is a pathname relative to the MATLAB path, MATLABPATH.
It is used to locate private and method files, which are usually hidden, or to
restrict the search for files when more than one file with the given name exists.

A partial pathname contains the last component, or last several components,
of the full pathname separated by /. For example, matfun/trace, private/
children, inline/formula, and demos/clown.mat are valid partial
pathnames. Specifying the @ in method directory names is optional, so funfun/
inline/formula is also a valid partial pathname.

Partial pathnames make it easy to find toolbox or MATLAB relative files on
your path in a portable way, independent of the location where MATLAB is
installed.

Many commands accept partial pathnames instead of a full pathname. Some of
these commands are

help, type, load, exist, what, which, edit, dbtype, dbstop,
dbclear, and fopen

Examples The following examples use partial pathnames.

what funfun/inline

M-files in directory matlabroot\toolbox\matlab\funfun\@inline
argnames disp feval inline subsref vertcat
cat display formula nargin symvar
char exist horzcat nargout vectorize

which funfun/inline/formula
matlabroot\toolbox\matlab\funfun\@inline\formula.m
% inline method

See Also path

pascal

2-17

2pascalPurpose Pascal matrix

Syntax A = pascal(n)
A = pascal(n,1)
A = pascal(n,2)

Description A = pascal(n) returns the Pascal matrix of order n: a symmetric positive
definite matrix with integer entries taken from Pascal’s triangle. The inverse
of A has integer entries.

A = pascal(n,1) returns the lower triangular Cholesky factor (up to the signs
of the columns) of the Pascal matrix. It is involutary, that is, it is its own
inverse.

A = pascal(n,2) returns a transposed and permuted version of pascal(n,1).
A is a cube root of the identity matrix.

Examples pascal(4) returns

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

A = pascal(3,2) produces

A =
 0 0 -1
 0 -1 2
 -1 -1 1

See Also chol

patch

2-18

2patchPurpose Create patch graphics object

Syntax patch(X,Y,C)
patch(X,Y,Z,C)
patch(FV)
patch(...'PropertyName',PropertyValue...)
patch('PropertyName',PropertyValue...) PN/PV pairs only
handle = patch(...)

Description patch is the low-level graphics function for creating patch graphics objects. A
patch object is one or more polygons defined by the coordinates of its vertices.
You can specify the coloring and lighting of the patch. See the Creating 3-D
Models with Patches for more information on using patch objects.

patch(X,Y,C) adds the filled two-dimensional patch to the current axes. The
elements of X and Y specify the vertices of a polygon. If X and Y are matrices,
MATLAB draws one polygon per column. C determines the color of the patch.
It can be a single ColorSpec, one color per face, or one color per vertex (see
“Remarks”). If C is a 1-by-3 vector, it is assumed to be an RGB triplet,
specifying a color directly.

patch(X,Y,Z,C) creates a patch in three-dimensional coordinates.

patch(FV) creates a patch using structure FV, which contains the fields
vertices, faces, and optionally facevertecdata. These fields correspond to
the Vertices, Faces, and FaceVertexCData patch properties.

patch(...'PropertyName',PropertyValue...) follows the X, Y, (Z), and C
arguments with property name/property value pairs to specify additional patch
properties.

patch('PropertyName',PropertyValue,...) specifies all properties using
property name/property value pairs. This form enables you to omit the color
specification because MATLAB uses the default face color and edge color,
unless you explicitly assign a value to the FaceColor and EdgeColor
properties. This form also allows you to specify the patch using the Faces and
Vertices properties instead of x-, y-, and z-coordinates. See the “Examples”
section for more information.

patch

2-19

handle = patch(...) returns the handle of the patch object it creates.

Remarks Unlike high-level area creation functions, such as fill or area, patch does not
check the settings of the figure and axes NextPlot properties. It simply adds the
patch object to the current axes.

If the coordinate data does not define closed polygons, patch closes the
polygons. The data can define concave or intersecting polygons. However, if the
edges of an individual patch face intersect themselves, the resulting face may
or may not be completely filled. In that case, it is better to break up the face
into smaller polygons.

Specifying Patch Properties
You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

There are two patch properties that specify color:

• CData – use when specifying x-, y-, and z-coordinates (XData, YData, ZData).

• FaceVertexCData – use when specifying vertices and connection matrix
(Vertices and Faces).

The CData and FaceVertexCData properties accept color data as indexed or
true color (RGB) values. See the CData and FaceVertexCData property
descriptions for information on how to specify color.

Indexed color data can represent either direct indices into the colormap or
scaled values that map the data linearly to the entire colormap (see the caxis

patch

2-20

function for more information on this scaling). The CDataMapping property
determines how MATLAB interprets indexed color data.

Color Data Interpretation
You can specify patch colors as:

• A single color for all faces

• One color for each face enabling flat coloring

• One color for each vertex enabling interpolated coloring

The following tables summarize how MATLAB interprets color data defined by
the CData and FaceVertexCData properties.

Interpretation of the CData Property

Color Specification

FaceVertexCData

CData

Indexed

True Color

direct

scaled

(CDataMapping)

Color Interpretation by MATLAB

Color Mapping

[X,Y,Z]Data CData Required for Results Obtained
Dimensions Indexed True Color

m-by-n scalar 1-by-1-by-3 Use the single color specified for all patch faces. Edges
can be only a single color.

patch

2-21

Interpretation of the FaceVertexCData Property

Examples This example creates a patch object using two different methods:

• Specifying x-, y-, and z-coordinates and color data (XData, YData, ZData, and
CData properties).

• Specifying vertices, the connection matrix, and color data (Vertices, Faces,
FaceVertexCData, and FaceColor properties).

m-by-n 1-by-n
(n >= 4)

1-by-n-by-3 Use one color for each patch face. Edges can be only a
single color.

m-by-n m-by-n m-by-n-3 Assign a color to each vertex. patch faces can be flat (a
single color) or interpolated. Edges can be flat or
interpolated.

[X,Y,Z]Data CData Required for Results Obtained
Dimensions Indexed True Color

Vertices Faces FaceVertexCData
Required for

Results Obtained

Dimensions Dimensions Indexed True Color

m-by-n k-by-3 scalar 1-by-3 Use the single color specified for all
patch faces. Edges can be only a single
color.

m-by-n k-by-3 k-by-1 k-by-3 Use one color for each patch face. Edges
can be only a single color.

m-by-n k-by-3 m-by-1 m-by-3 Assign a color to each vertex. patch faces
can be flat (a single color) or
interpolated. Edges can be flat or
interpolated.

patch

2-22

Specifying X, Y, and Z Coordinates
The first approach specifies the coordinates of each vertex. In this example, the
coordinate data defines two triangular faces, each having three vertices. Using
true color, the top face is set to white and the bottom face to gray.

x = [0 0;0 1;1 1];
y = [1 1;2 2;2 1];
z = [1 1;1 1;1 1];
tcolor(1,1,1:3) = [1 1 1];
tcolor(1,2,1:3) = [.7 .7 .7];
patch(x,y,z,tcolor)

Notice that each face shares two vertices with the other face (V1-V4 and V3-V5).

Specifying Vertices and Faces
The Vertices property contains the coordinates of each unique vertex defining
the patch. The Faces property specifies how to connect these vertices to form
each face of the patch. For this example, two vertices share the same location
so you need to specify only four of the six vertices. Each row contains the x, y,
and z-coordinates of each vertex.

vert = [0 1 1;0 2 1;1 2 1;1 1 1];

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

V2 V3
V5

V6
V1

V4

patch

2-23

There are only two faces, defined by connecting the vertices in the order
indicated.

fac = [1 2 3;1 3 4];

To specify the face colors, define a 2-by-3 matrix containing two RGB color
definitions.

tcolor = [1 1 1;.7 .7 .7];

With two faces and two colors, MATLAB can color each face with flat shading.
This means you must set the FaceColor property to flat, since the faces/
vertices technique is available only as a low-level function call (i.e., only by
specifying property name/property value pairs).

Create the patch by specifying the Faces, Vertices, and FaceVertexCData
properties as well as the FaceColor property.

patch('Faces',fac,'Vertices',vert,'FaceVertexCData',tcolor,...
'FaceColor','flat')

Specifying only unique vertices and their connection matrix can reduce the size
of the data for patches having many faces. See the descriptions of the Faces,
Vertices, and FaceVertexCData properties for information on how to define
them.

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

V1

V2 V3

V4

Face 1

Face 2

patch

2-24

MATLAB does not require each face to have the same number of vertices. In
cases where they do not, pad the Faces matrix with NaNs. To define a patch
with faces that do not close, add one or more NaN to the row in the Vertices
matrix that defines the vertex you do not want connected.

Object
Hierarchy

Setting Default Properties
You can set default patch properties on the axes, figure, and root levels.

set(0,'DefaultPatchPropertyName',PropertyValue...)
set(gcf,'DefaultPatchPropertyName',PropertyValue...)
set(gca,'DefaultPatchPropertyName',PropertyValue...)

PropertyName is the name of the patch property and PropertyValue is the value
you are specifying. Use set and get to access patch properties.

Property List The following table lists all patch properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Data Defining the Object

Faces Connection matrix for Vertices Values: m-by-n matrix
Default: [1,2,3]

patch

2-25

Vertices Matrix of x-, y-, and z-coordinates of
the vertices (used with Faces)

Values: matrix
Default: [0,1;1,1;0,0]

XData The x-coordinates of the vertices of
the patch

Values: vector or matrix
Default: [0;1;0]

YData The y-coordinates of the vertices of
the patch

Values: vector or matrix
Default: [1;1;0]

ZData The z-coordinates of the vertices of
the patch

Values: vector or matrix
Default: [] empty matrix

Specifying Color

CData Color data for use with the XData/
YData/ZData method

Values: scalar, vector, or
matrix
Default: [] empty matrix

CDataMapping Controls mapping of CData to
colormap

Values: scaled, direct
Default: scaled

EdgeColor Color of face edges Values: ColorSpec, none,
flat, interp
Default: ColorSpec

FaceColor Color of face Values: ColorSpec, none,
flat, interp
Default: ColorSpec

FaceVertexCData Color data for use with Faces/
Vertices method

Values: matrix
Default: [] empty matrix

MarkerEdgeColor Color of marker or the edge color for
filled markers

Values: ColorSpec, none,
auto
Default: auto

MarkerFaceColor Fill color for markers that are
closed shapes

Values: ColorSpec, none,
auto
Default: none

Controlling the Effects of Lights

Property Name Property Description Property Value

patch

2-26

AmbientStrength Intensity of the ambient light Values: scalar >=0 and <=1
Default: 0.3

BackFaceLighting Controls lighting of faces pointing
away from camera

Values: unlit, lit,
reverselit
Default: reverselit

DiffuseStrength Intensity of diffuse light Values: scalar >=0 and <=1
Default: 0.6

EdgeLighting Method used to light edges Values: none, flat,
gouraud, phong
Default: none

FaceLighting Method used to light edges Values: none, flat,
gouraud, phong
Default: none

NormalMode MATLAB-generated or
user-specified normal vectors

Values: auto, manual
Default: auto

SpecularColorReflectan
ce

Composite color of specularly
reflected light

Values: scalar 0 to 1
Default: 1

SpecularExponent Harshness of specular reflection Values: scalar >= 1
Default: 10

SpecularStrength Intensity of specular light Values: scalar >=0 and <=1
Default: 0.9

VertexNormals Vertex normal vectors Values: matrix

Defining Edges and Markers

LineStyle Select from five line styles. Values: −, −−, :, −., none
Default: −

LineWidth The width of the edge in points Values: scalar
Default: 0.5 points

Property Name Property Description Property Value

patch

2-27

Marker Marker symbol to plot at data
points

Values: see Marker property
Default: none

MarkerSize Size of marker in points Values: size in points
Default: 6

Specifying Transparency

AlphaDataMapping Transparency mapping method none, direct, scaled
Default: scaled

EdgeAlpha Transparency of the edges of patch
faces

scalar, flat, interp
Default: 1 (opaque)

FaceAlpha Transparency of the patch face scalar, flat, interp
Default: 1 (opaque)

FaceVertexAlphaData Face and vertex transparency data m-by-1 matrix

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
patch (useful for animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Highlight patch when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the patch visible or invisible Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the the
patch’s handle is visible to other
functions

Values: on, callback, off
Default: on

Property Name Property Description Property Value

patch

2-28

HitTest Determines if the patch can become
the current object (see the figure
CurrentObject property)

Values: on, off
Default: on

Controlling Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a mouse button is
pressed on over the patch

Values: string
Default: '' (empty string)

CreateFcn Define a callback routine that
executes when an patch is created

Values: string
Default: '' (empty string)

DeleteFcn Define a callback routine that
executes when the patch is deleted
(via close or delete)

Values: string
Default: '' (empty string)

Interruptible Determine if callback routine can
be interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu Associate a context menu with the
patch

Values: handle of a
Uicontrextmenu

General Information About the Patch

Children Patch objects have no children Values: [] (empty matrix)

Parent The parent of a patch object is
always an axes object

Value: axes handle

Selected Indicate whether the patch is in a
“selected” state.

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Property Name Property Description Property Value

patch

2-29

See Also area, caxis, fill, fill3, isosurface, surface

Type The type of graphics object (read
only)

Value: the string 'patch'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Property Name Property Description Property Value

Patch Properties

2-30

2Patch PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Patch Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

AlphaDataMapping none | direct | {scaled}

Transparency mapping method. This property determines how MATLAB
interprets indexed alpha data. This property can be any of the following:

• none - The transparency values of FaceVertexAlphaData are between 0 and
1 or are clamped to this range (the default).

• scaled - Transform the FaceVertexAlphaData to span the portion of the
alphamap indicated by the axes ALim property, linearly mapping data values
to alpha values.

• direct - use the FaceVertexAlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer values ranging
from 1 to length(alphamap). MATLAB maps values less than 1 to the first
alpha value in the alphamap, and values greater than length(alphamap) to
the last alpha value in the alphamap. Values with a decimal portion are fixed
to the nearest, lower integer. If FaceVertexAlphaData is an array unit8
integers, then the indexing begins at 0 (i.e., MATLAB maps a value of 0 to
the first alpha value in the alphamap).

AmbientStrength scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire scene. You
must have at least one visible light object in the axes for the ambient light to
be visible. The axes AmbientColor property sets the color of the ambient light,
which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular contribution of light
objects. See the DiffuseStrength and SpecularStrength properties.

Patch Properties

2-31

BackFaceLighting unlit | lit | {reverselit}

Face lighting control. This property determines how faces are lit when their
vertex normals point away from the camera:

• unlit – face is not lit

• lit – face lit in normal way

• reverselit – face is lit as if the vertex pointed towards the camera

This property is useful for discriminating between the internal and external
surfaces of an object. See the Using MATLAB Graphics manual for an example.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the patch object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

CData scalar, vector, or matrix

Patch colors. This property specifies the color of the patch. You can specify color
for each vertex, each face, or a single color for the entire patch. The way
MATLAB interprets CData depends on the type of data supplied. The data can
be numeric values that are scaled to map linearly into the current colormap,
integer values that are used directly as indices into the current colormap, or

Patch Properties

2-32

arrays of RGB values. RGB values are not mapped into the current colormap,
but interpreted as the colors defined. On true color systems, MATLAB uses the
actual colors defined by the RGB triples. On pseudocolor systems, MATLAB
uses dithering to approximate the RGB triples using the colors in the figure’s
Colormap and Dithermap.

The following two diagrams illustrate the dimensions of CData with respect to
the coordinate data arrays, XData, YData, and ZData. The first diagram
illustrates the use of indexed color.

Single Color

CData

[X,Y,Z]Data

F
a
c
e
1

F
a
c
e
2

F
a
c
e
3

F
a
c
e
4

F
a
c
e
5

One Color
Per Face

CData

One Color
Per Vertex

CData

[X,Y,Z]Data

[X,Y,Z]Data

Patch Properties

2-33

The second diagram illustrates the use of true color. True color requires
m-by-n-by-3 arrays to define red, green, and blue components for each color.

Note that if CData contains NaNs, MATLAB does not color the faces.

See also the Faces, Vertices, and FaceVertexCData properties for an
alternative method of patch definition.

CDataMapping {scaled} | direct

Direct or scaled color mapping. This property determines how MATLAB
interprets indexed color data used to color the patch. (If you use true color
specification for CData or FaceVertexCData, this property has no effect.)

• scaled – transform the color data to span the portion of the colormap
indicated by the axes CLim property, linearly mapping data values to colors.
See the caxis command for more information on this mapping.

• direct – use the color data as indices directly into the colormap. When not
scaled, the data are usually integer values ranging from 1 to

Single Color One Color
Per Face

One Color
Per Vertex

B
G

R

CData

F
a
c
e
1

F
a
c
e
2

F
a
c
e
3

F
a
c
e
4

F
a
c
e
5

R
G

B

CData
Red

Green
Blue

CData

[X,Y,Z]Data

[X,Y,Z]Data [X,Y,Z]Data

Patch Properties

2-34

length(colormap). MATLAB maps values less than 1 to the first color in
the colormap, and values greater than length(colormap) to the last color in
the colormap. Values with a decimal portion are fixed to the nearest, lower
integer.

Children matrix of handles

Always the empty matrix; patch objects have no children.

Clipping {on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does not display any
portion of the patch outside the axes rectangle.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a patch object. You
must define this property as a default value for patches. For example, the
statement,

set(0,'DefaultPatchCreateFcn','set(gcf,''DitherMap'',my_dither_
map)')

defines a default value on the root level that sets the figure DitherMap property
whenever you create a patch object. MATLAB executes this routine after
setting all properties for the patch created. Setting this property on an existing
patch object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

DeleteFcn string

Delete patch callback routine. A callback routine that executes when you delete
the patch object (e.g., when you issue a delete command or clear the axes (cla)
or figure (clf) containing the patch). MATLAB executes the routine before
deleting the object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

Patch Properties

2-35

DiffuseStrength scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the diffuse
component of the light falling on the patch. Diffuse light comes from light
objects in the axes.

You can also set the intensity of the ambient and specular components of the
light on the patch object. See the AmbientStrength and SpecularStrength
properties.

EdgeAlpha {scalar = 1} | flat | interp

Transparency of the edges of patch faces. This property can be any of the
following:

• scalar - A single non-Nan scalar value between 0 and 1 that controls the
transparency of all the edges of the object. 1 (the default) is fully opaque and
0 means completely transparent.

• flat - The alpha data (FaceVertexAlphaData) of each vertex controls the
transparency of the edge that follows it.

• interp - Linear interpolation of the alpha data (FaceVertexAlphaData) at
each vertex determines the transparency of the edge.

Note that you cannot specify flat or interp EdgeAlpha without first setting
FaceVertexAlphaData to a matrix containing one alpha value per face (flat)
or one alpha value per vertex (interp).

EdgeColor {ColorSpec} | none | flat | interp

Color of the patch edge. This property determines how MATLAB colors the
edges of the individual faces that make up the patch.

• ColorSpec – A three-element RGB vector or one of MATLAB’s predefined
names, specifying a single color for edges. The default edge color is black. See
ColorSpec for more information on specifying color.

• none – Edges are not drawn.

Patch Properties

2-36

• flat – The color of each vertex controls the color of the edge that follows it.
This means flat edge coloring is dependent on the order you specify the
vertices:

• interp – Linear interpolation of the CData or FaceVertexCData values at the
vertices determines the edge color.

EdgeLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of light objects on patch edges. Choices are:

• none – Lights do not affect the edges of this object.

• flat – The effect of light objects is uniform across each edge of the patch.

• gouraud – The effect of light objects is calculated at the vertices and then
linearly interpolated across the edge lines.

• phong – The effect of light objects is determined by interpolating the vertex
normals across each edge line and calculating the reflectance at each pixel.
Phong lighting generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase patch objects. Alternative erase modes are useful in creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

• normal – Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.

Vertex controlling the
color of the following edge

Patch Properties

2-37

The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none – Do not erase the patch when it is moved or destroyed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

• xor– Draw and erase the patch by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the patch does not damage
the color of the objects behind it. However, patch color depends on the color
of the screen behind it and is correctly colored only when over the axes
background Color, or the figure background Color if the axes Color is set to
none.

• background – Erase the patch by drawing it in the axes’ background Color,
or the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased patch, but the patch is always properly
colored.

Printing with Non-normal Erase Modes. MATLAB always prints figures as if the
EraseMode of all objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers of colors (e.g.,
XORing a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing non-normal mode objects.

FaceAlpha {scalar = 1} | flat | interp

Transparency of the patch face. This property can be any of the following:

• A scalar - A single non-NaN scalar value between 0 and 1 that controls the
transparency of all the faces of the object. 1 (the default) is fully opaque and
0 is completely transparent (invisible).

• flat - The values of the alpha data (FaceVertexAlphaData) determine the
transparency for each face. The alpha data at the first vertex determines the
transparency of the entire face.

• interp - Bilinear interpolation of the alpha data (FaceVertexAlphaData) at
each vertex determine the transparency of each face.

Patch Properties

2-38

Note that you cannot specify flat or interp FaceAlpha without first setting
FaceVertexAlphaData to a matrix containing one alpha value per face (flat)
or one alpha value per vertex (interp).

FaceColor {ColorSpec} | none | flat | interp

Color of the patch face. This property can be any of the following:

• ColorSpec – A three-element RGB vector or one of MATLAB’s predefined
names, specifying a single color for faces. See ColorSpec for more
information on specifying color.

• none – Do not draw faces. Note that edges are drawn independently of faces.

• flat – The values of CData or FaceVertexCData determine the color for each
face in the patch. The color data at the first vertex determines the color of the
entire face.

• interp – Bilinear interpolation of the color at each vertex determines the
coloring of each face.

FaceLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of light objects on patch faces. Choices are:

• none – Lights do not affect the faces of this object.

• flat – The effect of light objects is uniform across the faces of the patch.
Select this choice to view faceted objects.

• gouraud – The effect of light objects is calculated at the vertices and then
linearly interpolated across the faces. Select this choice to view curved
surfaces.

• phong – The effect of light objects is determined by interpolating the vertex
normals across each face and calculating the reflectance at each pixel. Select
this choice to view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

Faces m-by-n matrix

Vertex connection defining each face. This property is the connection matrix
specifying which vertices in the Vertices property are connected. The Faces
matrix defines m faces with up to n vertices each. Each row designates the
connections for a single face, and the number of elements in that row that are
not NaN defines the number of vertices for that face.

Patch Properties

2-39

The Faces and Vertices properties provide an alternative way to specify a
patch that can be more efficient than using x, y, and z coordinates in most
cases. For example, consider the following patch. It is composed of eight
triangular faces defined by nine vertices.

The corresponding Faces and Vertices properties are shown to the right of the
patch. Note how some faces share vertices with other faces. For example, the
fifth vertex (V5) is used six times, once each by faces one, two, and three and
six, seven, and eight. Without sharing vertices, this same patch requires 24
vertex definitions.

FaceVertexAlphaData m-by-1 matrix

Face and vertex transparency data. The FaceVertexAlphaData property
specifies the tranparency of patches defined by the Faces and Vertices
properties. The interpretation of the values specified for FaceVertexAlphaData
depends on the dimensions of the data.

FaceVertexAlphaData can be one of the following:

• A single value, which applies the same transparency to the entire patch.

• An m-by-1 matrix (where m is the number of rows in the Faces property),
which specifies one transparency value per face.

V1 V4 5

V1 5 V2

V2 5 V6

V2 V6 V3

V4 V7 V8

V4 V8 7

V8 V9

5 V9 V6
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F1

Faces property

V5

V5

V5

V5

F5 F7

F1 F3

F6 F8

F4F2

F2

F3

F4

F5

F6

F7

F8

V7 V8 V9

V4 V5

V1

V6

V2 V3

V5 X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5 Z5

Vertices property

X6 Y6 Z6

X7 Y7 Z7

X8 Y8 Z8

X9 Y9 Z9

X5 Y5 Z5

V1

V2

V3

V4

V5

V6

V7

V8

V9

V5

Patch Properties

2-40

• An m-by-1 matrix (where m is the number of rows in the Vertices property),
which specifies one transparency value per vertex.

FaceVertexCData matrix

Face and vertex colors. The FaceVertexCData property specifies the color of
patches defined by the Faces and Vertices properties, and the values are used
when FaceColor, EdgeColor, MarkerFaceColor, or MarkerEdgeColor are set
appropriately. The interpretation of the values specified for FaceVertexCData
depends on the dimensions of the data.

For indexed colors, FaceVertexCData can be:

• A single value, which applies a single color to the entire patch

• An n-by-1 matrix, where n is the number of rows in the Faces property,
which specifies one color per face

• An n-by-1 matrix, where n is the number of rows in the Vertices property,
which specifies one color per vertex

For true colors, FaceVertexCData can be:

• A 1-by-3 matrix , which applies a single color to the entire patch

• An n-by-3 matrix, where n is the number of rows in the Faces property,
which specifies one color per face

• An n-by-3 matrix, where n is the number of rows in the Vertices property,
which specifies one color per vertex

The following diagram illustrates the various forms of the FaceVertexCData
property for a patch having eight faces and nine vertices. The CDataMapping

Patch Properties

2-41

property determines how MATLAB interprets the FaceVertexCData property
when you specify indexed colors.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to

B9B9

B1

B2

B3

B4

B5

B6

B7

B8

BGC1

C2

C3

C4

C5

C6

C7

C8

C1

C2

C3

C4

C5

C6

C7

C8

C9

C R G1

G2

G3

G4

G5

G6

G7

G8

R1

R2

R3

R4

R5

R6

R7

R8

B1

B2

B3

B4

B5

B6

B7

B8

G1

G2

G3

G4

G5

G6

G7

G8

R1

R2

R3

R4

R5

R6

R7

R8

R9

FaceVertexCData

Indexed

Single color
One color
per face

One color
per vertex

True color

Single color
One color
per face

One color
per vertex

Patch Properties

2-42

protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s Currentaxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the patch can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the patch. If HitTest is off, clicking
on the patch selects the object below it (which maybe the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a patch callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the BusyAction property for
related information.

Patch Properties

2-43

LineStyle {−} | −− | : | −. | none

Edge linestyle. This property specifies the line style of the patch edges. The
following table lists the available line styles.

You can use LineStyle none when you want to place a marker at each point but
do not want the points connected with a line (see the Marker property).

LineWidth scalar

Edge line width. The width, in points, of the patch edges (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies marks that locate vertices. You
can set values for the Marker property independently from the LineStyle
property. The following tables lists the available markers.

Symbol Line Style

− solid line (default)

−− dashed line

: dotted line

−. dash-dot line

none no line

Marker Specifier Description

+ plus sign

o circle

* asterisk

. point

x cross

s square

Patch Properties

2-44

MarkerEdgeColor ColorSpec | none | {auto} | flat

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as the
EdgeColor property.

MarkerFaceColor ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or the figure color, if the axes Color property is set to none.

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB
draws the point marker at 1/3 of the specified size.

NormalMode {auto} | manual

MATLAB-generated or user-specified normal vectors. When this property is
auto, MATLAB calculates vertex normals based on the coordinate data. If you

d diamond

^ upward pointing triangle

v downward pointing triangle

> right pointing triangle

< left pointing triangle

p five-pointed star (pentagram)

h six-pointed star (hexagram)

none no marker (default)

Marker Specifier Description

Patch Properties

2-45

specify your own vertex normals, MATLAB sets this property to manual and
does not generate its own data. See also the VertexNormals property.

Parent axes handle

Patch’s parent. The handle of the patch’s parent object. The parent of a patch
object is the axes in which it is displayed. You can move a patch object to
another axes by setting this property to the handle of the new parent.

Selected on | {off}

Is object selected? When this property is on, MATLAB displays selection
handles or a dashed box (depending on the number of faces) if the
SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by:

• Drawing handles at each vertex for a single-faced patch.

• Drawing a dashed bounding box for a multi-faced patch.

When SelectionHighlight is off, MATLAB does not draw the handles.

SpecularColorReflectance scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the color of the
specularly reflected light depends on both the color of the object from which it
reflects and the color of the light source. When set to 1, the color of the
specularly reflected light depends only on the color or the light source (i.e., the
light object Color property). The proportions vary linearly for values in
between.

SpecularExponent scalar >= 1

Harshness of specular reflection. This property controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the specular
component of the light falling on the patch. Specular light comes from light
objects in the axes.

Patch Properties

2-46

You can also set the intensity of the ambient and diffuse components of the
light on the patch object. See the AmbientStrength and DiffuseStrength
properties.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you use patch objects to create borders for a group of
uicontrol objects and want to change the color of the borders in a uicontrol’s
callback routine. You can specify a Tag with the patch definition:

patch(X,Y,'k','Tag','PatchBorder')

Then use findobj in the uicontrol’s callback routine to obtain the handle of the
patch and set its FaceColor property.

set(findobj('Tag','PatchBorder'),'FaceColor','w')

Type string (read only)

Class of the graphics object. For patch objects, Type is always the string
'patch'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the patch. Assign this property the handle of a
uicontextmenu object created in the same figure as the patch. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the patch.

UserData matrix

User-specified data. Any matrix you want to associate with the patch object.
MATLAB does not use this data, but you can access it using set and get.

VertexNormals matrix

Surface normal vectors. This property contains the vertex normals for the
patch. MATLAB generates this data to perform lighting calculations. You can
supply your own vertex normal data, even if it does not match the coordinate
data. This can be useful to produce interesting lighting effects.

Patch Properties

2-47

Vertices matrix

Vertex coordinates. A matrix containing the x-, y-, z-coordinates for each vertex.
See the Faces property for more information.

Visible {on} | off

Patch object visibility. By default, all patches are visible. When set to off, the
patch is not visible, but still exists and you can query and set its properties.

XData vector or matrix

X-coordinates. The x-coordinates of the points at the vertices of the patch. If
XData is a matrix, each column represents the x-coordinates of a single face of
the patch. In this case, XData, YData, and ZData must have the same
dimensions.

YData vector or matrix

Y-coordinates. The y-coordinates of the points at the vertices of the patch. If
YData is a matrix, each column represents the y-coordinates of a single face of
the patch. In this case, XData, YData, and ZData must have the same
dimensions.

ZData vector or matrix

Z-coordinates. The z-coordinates of the points at the vertices of the patch. If
ZData is a matrix, each column represents the z-coordinates of a single face of
the patch. In this case, XData, YData, and ZData must have the same
dimensions.

See Also patch

path

2-48

2pathPurpose View or change the MATLAB directory search path

Graphical
Interface

As an alternative to the path function, use the Set Path dialog box. To open it,
select Set Path from the File menu in the MATLAB desktop.

Syntax path
path newpath
path(path,'newpath')
path('newpath',path)
p = path(...)

Description path displays the current MATLAB search path. The initial search path list is
defined by toolbox/local/pathdef.m.

path newpath changes the search path to be comprised of those directories
named in the string, 'newpath'.

path(path,'newpath') appends a new directory to the current search path.

path('newpath',path) prepends a new directory to the current search path.

p = path(...) returns the specified path in string variable p.

Remarks For more information on how MATLAB uses the directory search path, see
How Functions Work and How MATLAB Determines Which Method to Call.

Note Save any M-files you create and any MATLAB-supplied M-files that
you edit in a directory that is not in the MATLAB directory tree. If you keep your
files in the MATLAB directory tree, they may be overwritten when you install a
new version of MATLAB. Also note that locations of files in the MATLAB/
toolbox directory tree are loaded and cached in memory at the beginning of
each MATLAB session to improve performance. If you do save a new or edited
file in the MATLAB/toolbox directory tree, restart MATLAB or use the rehash
function to reload the directory and update the cache before you use the file.

path

2-49

Examples To add a new directory to the search path on Windows,

path(path,’c:tools\goodstuff’)

To add a new directory to the search path on UNIX,

path(path,’/home/tools/goodstuff’)

See Also addpath, genpath, cd, dir, partialpath, rehash, rmpath, what

pathtool

2-50

2pathtoolPurpose Open Set Path dialog box to view and change MATLAB path

Graphical
Interface

As an alternative to the pathtool function, select Set Path from the File menu
in the MATLAB desktop.

Syntax pathtool

Description pathtool opens the Set Path dialog box, a graphical interface you use to view
and modify the MATLAB search path, as well as see files on the path.

See Also addpath, edit, path, rmpath, workspace

“Setting the Search Path”

When you press one of these buttons, the change is made to the current search
path, but the search path is not automatically saved for future sessions

Make changes to
the search path

Directories on the current MATLAB search path

Save changes for
use in the next
MATLAB session

pause

2-51

2pausePurpose Halt execution temporarily

Syntax pause
pause(n)
pause on
pause off

Description pause, by itself, causes M-files to stop and wait for you to press any key before
continuing.

pause(n) pauses execution for n seconds before continuing, where n can be any
real number. The resolution of the clock is platform specific. A fractional pause
of 0.01 seconds should be supported on most platforms.

pause on allows subsequent pause commands to pause execution.

pause off ensures that any subsequent pause or pause(n) statements do not
pause execution. This allows normally interactive scripts to run unattended.

See Also drawnow

pbaspect

2-52

2pbaspectPurpose Set or query the plot box aspect ratio

Syntax pbaspect
pbaspect([aspect_ratio])
pbaspect('mode')
pbaspect('auto')
pbaspect('manual')
pbaspect(axes_handle,...)

Description The plot box aspect ratio determines the relative size of the x-, y-, and z-axes.

pbaspect with no arguments returns the plot box aspect ratio of the current
axes.

pbaspect([aspect_ratio]) sets the plot box aspect ratio in the current axes
to the specified value. Specify the aspect ratio as three relative values
representing the ratio of the x-, y-, and z-axes size. For example, a value of
[1 1 1] (the default) means the plot box is a cube (although with stretch-to-fill
enabled, it may not appear as a cube). See Remarks.

pbaspect('mode') returns the current value of the plot box aspect ratio mode,
which can be either auto (the default) or manual. See Remarks.

pbaspect('auto') sets the plot box aspect ratio mode to auto.

pbaspect('manual') sets the plot box aspect ratio mode to manual.

pbaspect(axes_handle,...) performs the set or query on the axes identified
by the first argument, axes_handle. If you do not specify an axes handle,
pbaspect operates on the current axes.

Remarks pbaspect sets or queries values of the axes object PlotBoxAspectRatio and
PlotBoxAspectRatioMode properties.

When the plot box aspect ratio mode is auto, MATLAB sets the ratio to
[1 1 1], but may change it to accommodate manual settings of the data aspect
ratio, camera view angle, or axis limits. See the axes DataAspectRatio
property for a table listing the interactions between various properties.

pbaspect

2-53

Setting a value for the plot box aspect ratio or setting the plot box aspect ratio
mode to manual disables MATLAB’s stretch-to-fill feature (stretching of the
axes to fit the window). This means setting the plot box aspect ratio to its
current value,

pbaspect(pbaspect)

can cause a change it the way the graphs look. See the Remarks section of the
axes reference description and the “Aspect Ratio” section in the Using
MATLAB Graphics manual for a discussion of stretch-to-fill.

Examples The following surface plot of the function is useful to illustrate
the plot box aspect ratio. First plot the function over the range
–2 ≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

Querying the plot box aspect ratio shows that the plot box is square.

pbaspect
ans =

1 1 1

z xe x2 y2––()=

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

pbaspect

2-54

It is also interesting to look at the data aspect ratio selected by MATLAB.

daspect
ans =

4 4 1

To illustrate the interaction between the plot box and data aspect ratios, set the
data aspect ratio to [1 1 1] and again query the plot box aspect ratio.

daspect([1 1 1])

pbaspect
ans =

4 4 1

The plot box aspect ratio has changed to accommodate the specified data aspect
ratio. Now suppose you want the plot box aspect ratio to be [1 1 1] as well.

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5

pbaspect

2-55

pbaspect([1 1 1])

Notice how MATLAB changed the axes limits because of the constraints
introduced by specifying both the plot box and data aspect ratios.

You can also use pbaspect to disable stretch-to-fill. For example, displaying
two subplots in one figure can give surface plots a squashed appearance.
Disabling stretch-to-fill.

upper_plot = subplot(211);
surf(x,y,z)
lower_plot = subplot(212);
surf(x,y,z)
pbaspect(upper_plot,'manual')

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

pbaspect

2-56

See Also axis, daspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim, YLim, ZLim

The “Aspect Ratio” section in the Using MATLAB Graphics manual.

−2
0

2

−2

0

2
−0.5

0

0.5

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

pcg

2-57

2pcgPurpose Preconditioned Conjugate Gradients method

Syntax x = pcg(A,b)
pcg(A,b,tol)
pcg(A,b,tol,maxit)
pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)
pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag,relres,iter,resvec] =

pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)

Description x = pcg(A,b) attempts to solve the system of linear equations A*x=b for x.
The n-by-n coefficient matrix Amust be symmetric and positive definite and the
column vector b must have length n. A can be a function afun such that afun(x)
returns A*x.

If pcg converges, a message to that effect is displayed. If pcg fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

pcg(A,b,tol) specifies the tolerance of the method. If tol is [], then pcg uses
the default, 1e-6.

pcg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is
[], then pcg uses the default, min(n,20).

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use symmetric
positive definite preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then pcg applies no preconditioner. M
can be a function that returns M\x.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then pcg
uses the default, an all-zero vector.

pcg

2-58

pcg(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = pcg(A,b,tol,maxit,M1,M2,x0) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration including
norm(b-A*x0).

Examples Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M = diag([10:-1:1 1 1:10]);

Flag Convergence

0 pcg converged to the desired tolerance tol within maxit
iterations.

1 pcg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 pcg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during pcg became
too small or too large to continue computing.

pcg

2-59

[x,flag,rr,iter,rv] = pcg(A,b,tol,maxit,M);

Alternatively, use this one-line matrix-vector product function

function y = afun(x,n)
y = [0;
 x(1:n-1)] + [((n-1)/2:-1:0)';
 (1:(n-1)/2)'].*x + [x(2:n);
 0];

and this one-line preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to pcg

[x1,flag1,rr1,iter1,rv1] = pcg(@afun,b,tol,maxit,@mfun,...
 [],[],21);

Example 2.

A = delsq(numgrid('C',25));
b = ones(length(A),1);
[x,flag] = pcg(A,b)

flag is 1 because pcg does not converge to the default tolerance of 1e-6 within
the default 20 iterations.

R = cholinc(A,1e-3);
[x2,flag2,relres2,iter2,resvec2] = pcg(A,b,1e-8,10,R',R)

flag2 is 0 because pcg converges to the tolerance of 1.2e-9 (the value of
relres2) at the sixth iteration (the value of iter2) when preconditioned by the
incomplete Cholesky factorization with a drop tolerance of 1e-3.
resvec2(1) = norm(b) and resvec2(7) = norm(b-A*x2). You can follow the
progress of pcg by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

pcg

2-60

See Also bicg, bicgstab, cgs, cholinc, gmres, lsqr, minres, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

0 1 2 3 4 5 6
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
la

tiv
e

re
si

du
al

pchip

2-61

2pchipPurpose Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Syntax yi = pchip(x,y,xi)
pp = pchip(x,y)

Description yi = pchip(x,y,xi) returns vector yi containing elements corresponding to
the elements of xi and determined by piecewise cubic interpolation within
vectors x and y. The vector x specifies the points at which the data y is given.
If y is a matrix, then the interpolation is performed for each column of y and
yi is length(xi)-by-size(y,2).

pp = pchip(x,y) returns a piecewise polynomial structure for use by ppval.
x can be a row or column vector. y is a row or column vector of the same length
as x, or a matrix with length(x) columns.

pchip finds values of an underlying interpolating function at
intermediate points, such that:

• On each subinterval , is the cubic Hermite interpolant to
the given values and certain slopes at the two endpoints.

• interpolates , i.e., , and the first derivative is
continuous. is probably not continuous; there may be jumps at the .

• The slopes at the are chosen in such a way that preserves the shape
of the data and respects monotonicity. This means that, on intervals where
the data are monotonic, so is ; at points where the data has a local
extremum, so does .

Note If is a matrix, satisfies the above for each column of .

Remarks spline constructs in almost the same way pchip constructs .
However, spline chooses the slopes at the differently, namely to make even

 continuous. This has the following effects:

• spline produces a smoother result, i.e. is continuous.

• spline produces a more accurate result if the data consists of values of a
smooth function.

P x()

xk x xk 1+≤ ≤ P x()

P x() y P x j() y j= P ′ x()
P″ x() x j

x j P x()

P x()
P x()

y P x() y

S x() P x()
x j

S″ x()

S″ x()

pchip

2-62

• pchip has no overshoots and less oscillation if the data are not smooth.

• pchip is less expensive to set up.

• The two are equally expensive to evaluate.

Examples x = -3:3;
y = [-1 -1 -1 0 1 1 1];
t = -3:.01:3;
p = pchip(x,y,t);
s = spline(x,y,t);
plot(x,y,'o',t,p,'-',t,s,'-.')
legend('data','pchip','spline',4)

See Also interp1, spline, ppval

References [1] Fritsch, F. N. and R. E. Carlson, “Monotone Piecewise Cubic Interpolation,”
SIAM J. Numerical Analysis, Vol. 17, 1980, pp.238-246.

[2] Kahaner, David, Cleve Moler, Stephen Nash, Numerical Methods and
Software, Prentice Hall, 1988.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

data
pchip
spline

pcode

2-63

2pcodePurpose Create preparsed pseudocode file (P-file)

Syntax pcode fun
pcode *.m
pcode fun1 fun2 ...
pcode... -inplace

Description pcode fun parses the M-file fun.m into the P-file fun.p and puts it into the
current directory. The original M-file can be anywhere on the search path.

pcode *.m creates P-files for all the M-files in the current directory.

pcode fun1 fun2 ... creates P-files for the listed functions.

pcode... -inplace creates P-files in the same directory as the M-files. An
error occurs if the files can’t be created.

pcolor

2-64

2pcolorPurpose Pseudocolor plot

Syntax pcolor(C)
pcolor(X,Y,C)
h = pcolor(...)

Description A pseudocolor plot is a rectangular array of cells with colors determined by C.
MATLAB creates a pseudocolor plot by using each set of four adjacent points
in C to define a surface patch (i.e., cell).

pcolor(C) draws a pseudocolor plot. The elements of C are linearly mapped to
an index into the current colormap. The mapping from C to the current
colormap is defined by colormap and caxis.

pcolor(X,Y,C) draws a pseudocolor plot of the elements of C at the locations
specified by X and Y. The plot is a logically rectangular, two-dimensional grid
with vertices at the points [X(i,j), Y(i,j)]. X and Y are vectors or matrices
that specify the spacing of the grid lines. If X and Y are vectors, X corresponds
to the columns of C and Y corresponds to the rows. If X and Y are matrices, they
must be the same size as C.

h = pcolor(...) returns a handle to a surface graphics object.

Remarks A pseudocolor plot is a flat surface plot viewed from above. pcolor(X,Y,C) is
the same as viewing surf(X,Y,0*Z,C) using view([0 90]).

When you use shading faceted or shading flat, the constant color of each cell
is the color associated with the corner having the smallest x-y coordinates.
Therefore, C(i,j) determines the color of the cell in the ith row and jth column.
The last row and column of C are not used.

When you use shading interp, each cell’s color results from a bilinear
interpolation of the colors at its four vertices and all elements of C are used.

Examples A Hadamard matrix has elements that are +1 and –1. A colormap with only two
entries is appropriate when displaying a pseudocolor plot of this matrix.

pcolor(hadamard(20))
colormap(gray(2))
axis ij

pcolor

2-65

axis square

A simple color wheel illustrates a polar coordinate system.

n = 6;
r = (0:n)'/n;
theta = pi*(–n:n)/n;
X = r*cos(theta);
Y = r*sin(theta);
C = r*cos(2∗ theta);
pcolor(X,Y,C)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

pcolor

2-66

axis equal tight

Algorithm The number of vertex colors for pcolor(C) is the same as the number of cells
for image(C). pcolor differs from image in that pcolor(C) specifies the colors
of vertices, which are scaled to fit the colormap; changing the axes clim
property changes this color mapping. image(C) specifies the colors of cells and
directly indexes into the colormap without scaling. Additionally,
pcolor(X,Y,C) can produce parametric grids, which is not possible with image.

See Also caxis, image, mesh, shading, surf, view

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

pdepe

2-67

2pdepePurpose Solve initial-boundary value problems for systems of parabolic and elliptic
partial differential equations (PDEs) in one space variable and time

Syntax sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)

Arguments

Description sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves initial-boundary
value problems for systems of parabolic and elliptic PDEs in the one space
variable and time . The ordinary differential equations (ODEs) resulting
from discretization in space are integrated to obtain approximate solutions at
times specified in tspan. The pdepe function returns values of the solution on
a mesh provided in xmesh.

m A parameter corresponding to the symmetry of the problem. m can
be slab = 0, cylindrical = 1, or spherical = 2.

pdefun A function that defines the components of the PDE.

icfun A function that defines the initial conditions.

bcfun A function that defines the boundary conditions.

xmesh A vector [x0, x1, ..., xn] specifying the points at which a numerical
solution is requested for every value in tspan. The elements of
xmesh must satisfy x0 < x1 < ... < xn. The length of xmesh must
be >= 3.

tspan A vector [t0, t1, ..., tf] specifying the points at which a solution is
requested for every value in xmesh. The elements of tspan must
satisfy t0 < t1 < ... < tf. The length of tspan must be >= 3.

options Some options of the underlying ODE solver are available in pdepe:
RelTol, AbsTol, NormControl, InitialStep, and MaxStep. In most
cases, default values for these options provide satisfactory
solutions. See odeset for details.

p1,p2,... Optional parameters to be passed to pdefun, icfun, and bcfun.

x t

pdepe

2-68

pdepe solves PDEs of the form:

(2-1)

The PDEs hold for and . The interval must be finite.
can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry,

respectively. If , then must be >= 0.

In Equation 2-1, is a flux term and is a source
term. The coupling of the partial derivatives with respect to time is restricted
to multiplication by a diagonal matrix . The diagonal elements
of this matrix are either identically zero or positive. An element that is
identically zero corresponds to an elliptic equation and otherwise to a parabolic
equation. There must be at least one parabolic equation. An element of that
corresponds to a parabolic equation can vanish at isolated values of if those
values of are mesh points. Discontinuities in and/or due to material
interfaces are permitted provided that a mesh point is placed at each interface.

For and all , the solution components satisfy initial conditions of the
form

(2-2)

For all and either or , the solution components satisfy a
boundary condition of the form

(2-3)

Elements of are either identically zero or never zero. Note that the boundary
conditions are expressed in terms of the flux rather than . Also, of the
two coefficients, only can depend on .

In the call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan):

• m corresponds to .

• xmesh(1) and xmesh(end) correspond to and .

• tspan(1) and tspan(end) correspond to and .

c x t u
∂u
∂x
-------, , , 

  ∂u
∂t
------- x m– ∂

∂x
------ xm f x t u

∂u
∂x
-------, , , 

 
 
  s x t u

∂u
∂x
-------, , , 

 +=

t0 t tf≤ ≤ a x b≤ ≤ a b,[]
m

m 0> a

f x t u ∂u ∂x⁄, , ,() s x t u ∂u ∂x⁄, , ,()

c x t u ∂u ∂x⁄, , ,()

c
x

x c s

t t0= x

u x t0,() u0 x()=

t x a= x b=

p x t u, ,() q x t,() f x t u
u∂
x∂

-------, , , 
 + 0=

q
f ∂u ∂x⁄

p u

m

a b

t0 t f

pdepe

2-69

• pdefun computes the terms , , and (Equation 2-1). It has the form
[c,f,s] = pdefun(x,t,u,dudx)

The input arguments are scalars x and t and vectors u and dudx that
approximate the solution and its partial derivative with respect to ,
respectively. c, f, and s are column vectors. c stores the diagonal elements of
the matrix (Equation 2-1).

• icfun evaluates the initial conditions. It has the form
u = icfun(x)

When called with an argument x, icfun evaluates and returns the initial
values of the solution components at x in the column vector u.

• bcfun evaluates the terms and of the boundary conditions
(Equation 2-3). It has the form
[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

ul is the approximate solution at the left boundary xl = and ur is the
approximate solution at the right boundary xr = . pl and ql are column
vectors corresponding to and evaluated at xl, similarly pr and qr
correspond to xr. When and , boundedness of the solution near

 requires that the flux vanish at . pdepe imposes this
boundary condition automatically and it ignores values returned in pl and
ql.

pdepe returns the solution as a multidimensional array sol.
= ui = sol(:,:,i) is an approximation to the ith component of the solution

vector . The element ui(j,k) = sol(j,k,i) approximates at
= (tspan(j),xmesh(k)).

ui = sol(j,:,i) approximates component i of the solution at time tspan(j) and
mesh points xmesh(:). Use pdeval to compute the approximation and its
partial derivative at points not included in xmesh. See pdeval for
details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) solves as above
with default integration parameters replaced by values in options, an
argument created with the odeset function. Only some of the options of the
underlying ODE solver are available in pdepe: RelTol, AbsTol, NormControl,

c f s

u x

c

p q

a
b

p q
m 0> a 0=

x 0= f a 0=

ui
u ui

t x,()

∂ui ∂x⁄

pdepe

2-70

InitialStep, and MaxStep. The defaults obtained by leaving off the input
argument options will generally be satisfactory. See odeset for details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)
passes the additional parameters p1, p2, ... to the functions pdefun, icfun, and
bcfun. Use options = [] as a placeholder if no options are set.

Remarks • The arrays xmesh and tspan play different roles in pdepe.

tspan – The pdepe function performs the time integration with an ODE
solver that selects both the time step and formula dynamically. The
elements of tspan merely specify where you want answers and the cost
depends weakly on the length of tspan.

xmesh – Second order approximations to the solution are made on the mesh
specified in xmesh. Generally, it is best to use closely spaced mesh points
where the solution changes rapidly. pdepe does not select the mesh in
automatically. You must provide an appropriate fixed mesh in xmesh. The
cost depends strongly on the length of xmesh. When , it is not necessary
to use a fine mesh near to account for the coordinate singularity.

• The time integration is done with ode15s. pdepe exploits the capabilities of
ode15s for solving the differential-algebraic equations that arise when
Equation 2-1 contains elliptic equations, and for handling Jacobians with a
specified sparsity pattern.

• After discretization, elliptic equations give rise to algebraic equations. If the
elements of the initial conditions vector that correspond to elliptic equations
are not “consistent” with the discretization, pdepe tries to adjust them before
beginning the time integration. For this reason, the solution returned for the
initial time may have a discretization error comparable to that at any other
time. If the mesh is sufficiently fine, pdepe can find consistent initial
conditions close to the given ones. If pdepe displays a message that it has
difficulty finding consistent initial conditions, try refining the mesh.

No adjustment is necessary for elements of the initial conditions vector that
correspond to parabolic equations.

x

m 0>
x 0=

pdepe

2-71

Examples Example 1. This example illustrates the straightforward formulation,
computation, and plotting of the solution of a single PDE.

This equation holds on an interval for times .

The PDE satisfies the initial condition

and boundary conditions

It is convenient to use subfunctions to place all the functions required by pdepe
in a single M-file.

function pdex1

m = 0;
x = linspace(0,1,20);
t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
% Extract the first solution component as u.
u = sol(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)
title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')
ylabel('Time t')

% A solution profile can also be illuminating.
figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')

π2 ∂u
∂t
------ ∂

∂x
------ ∂u

∂x
------ 
 =

0 x 1≤ ≤ t 0≥

u x 0,() πxsin=

u 0 t,() 0≡

πe t– ∂u
∂x
------ 1 t,()+ 0=

pdepe

2-72

ylabel('u(x,2)')
% --
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;
% --
function u0 = pdex1ic(x)
u0 = sin(pi*x);
% --
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

In this example, the PDE, initial condition, and boundary conditions are coded
in subfunctions pdex1pde, pdex1ic, and pdex1bc.

The surface plot shows the behavior of the solution.

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

Distance x

Numerical solution computed with 20 mesh points.

Time t

pdepe

2-73

The following plot shows the solution profile at the final value of t (i.e., t = 2).

Example 2. This example illustrates the solution of a system of PDEs. The
problem has boundary layers at both ends of the interval. The solution changes
rapidly for small .

The PDEs are

where .

This equation holds on an interval for times .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Solution at t = 2

Distance x

u(
x,

2)

t

∂u1
∂t

--------- 0.024
∂2u1

∂x2
------------ F u1 u2–()–=

∂u2
∂t

--------- 0.170
∂2u2

∂x2
------------ F u1 u2–()+=

F y() exp 5.73 y() exp 11.46– y()–=

0 x 1≤ ≤ t 0≥

pdepe

2-74

The PDE satisfies the initial conditions

and boundary conditions

In the form expected by pdepe, the equations are

The boundary conditions on the partial derivatives of have to be written in
terms of the flux. In the form expected by pdepe, the left boundary condition is

and the right boundary condition is

The solution changes rapidly for small . The program selects the step size in
time to resolve this sharp change, but to see this behavior in the plots, the
example must select the output times accordingly. There are boundary layers
in the solution at both ends of [0,1], so the example places mesh points near 0
and 1 to resolve these sharp changes. Often some experimentation is needed to
select a mesh that reveals the behavior of the solution.

u1 x 0,() 1≡

u2 x 0,() 0≡

∂u1
∂x

--------- 0 t,() 0≡

u2 0 t,() 0≡

u1 1 t,() 1≡

∂u2
∂x

--------- 1 t,() 0≡

1

1

∂
∂t

u1

u2

∂
∂x

0.024 ∂u1 ∂x⁄()

0.170 ∂u2 ∂x⁄()

F u1 u2–()–

F u1 u2–()
+=.∗

u

0
u2

1

0
+

0.024 ∂u1 ∂x⁄()

0.170 ∂u2 ∂x⁄()

0

0
=.∗

u1 1–

0

0

1
+

0.024 ∂u1 ∂x⁄()

0.170 ∂u2 ∂x⁄()
0

0
=.∗

t

pdepe

2-75

function pdex4
m = 0;
x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
% --
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [0.024; 0.17] .* DuDx;
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];
% --
function u0 = pdex4ic(x);
u0 = [1; 0];
% --
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];

In this example, the PDEs, intial conditions, and boundary conditions are
coded in subfunctions pdex4pde, pdex4ic, and pdex4bc.

pdepe

2-76

The surface plots show the behavior of the solution components.

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

Distance x

u1(x,t)

Time t

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance x

u2(x,t)

Time t

pdepe

2-77

See Also function_handle, pdeval, ode15s, odeset, odeget

References [1] Skeel, R. D. and M. Berzins, “A Method for the Spatial Discretization of
Parabolic Equations in One Space Variable,” SIAM Journal on Scientific and
Statistical Computing, Vol. 11, 1990, pp.1-32.

pdeval

2-78

2pdevalPurpose Evaluate the numerical solution of a PDE using the output of pdepe

Syntax [uout,duoutdx] = pdeval(m,xmesh,ui,xout)

Arguments

Description [uout,duoutdx] = pdeval(m,x,ui,xout) approximates the solution and
its partial derivative at points from the interval [x0,xn]. The pdeval
function returns the computed values in uout and duoutdx, respectively.

Note pdeval evaluates the partial derivative rather than the flux .
Although the flux is continuous, the partial derivative may have a jump at a
material interface.

See Also pdepe

m Symmetry of the problem: slab = 0, cylindrical = 1, spherical = 2.
This is the first input argument used in the call to pdepe.

xmesh A vector [x0, x1, ..., xn] specifying the points at which the elements
of ui were computed. This is the same vector with which pdepe was
called.

ui A vector sol(j,:,i) that approximates component i of the solution at
time and mesh points xmesh, where sol is the solution returned
by pdepe.

xout A vector of points from the interval [x0,xn] at which the interpolated
solution is requested.

t f

ui
∂ui ∂x⁄

∂ui ∂x⁄ f

peaks

2-79

2peaksPurpose A sample function of two variables.

Syntax Z = peaks;
Z = peaks(n);
Z = peaks(V);
Z = peaks(X,Y);

peaks;
peaks(N);
peaks(V);
peaks(X,Y);

[X,Y,Z] = peaks;
[X,Y,Z] = peaks(n);
[X,Y,Z] = peaks(V);

Description peaks is a function of two variables, obtained by translating and scaling
Gaussian distributions, which is useful for demonstrating mesh, surf, pcolor,
contour, and so on.

Z = peaks; returns a 49-by-49 matrix.

Z = peaks(n); returns an n-by-n matrix.

Z = peaks(V); returns an n-by-n matrix, where n = length(V).

Z = peaks(X,Y); evaluates peaks at the given X and Y (which must be the same
size) and returns a matrix the same size.

peaks(...) (with no output argument) plots the peaks function with surf.

[X,Y,Z] = peaks(...); returns two additional matrices, X and Y, for
parametric plots, for example, surf(X,Y,Z,del2(Z)). If not given as input, the
underlying matrices X and Y are:

 [X,Y] = meshgrid(V,V)

where V is a given vector, or V is a vector of length n with elements equally
spaced from −3 to 3. If no input argument is given, the default n is 49.

See Also meshgrid, surf

perms

2-80

2permsPurpose All possible permutations

Syntax P = perms(v)

Description P = perms(v), where v is a row vector of length n, creates a matrix whose rows
consist of all possible permutations of the n elements of v. Matrix P contains n!
rows and n columns.

Examples The command perms(2:2:6) returns all the permutations of the numbers 2, 4,
and 6:

2 4 6
2 6 4
4 2 6
4 6 2
6 4 2
6 2 4

Limitations This function is only practical for situations where n is less than about 15.

See Also nchoosek, permute, randperm

permute

2-81

2permutePurpose Rearrange the dimensions of a multidimensional array

Syntax B = permute(A,order)

Description B = permute(A,order) rearranges the dimensions of A so that they are in the
order specified by the vector order. B has the same values of A but the order of
the subscripts needed to access any particular element is rearranged as
specified by order. All the elements of order must be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Given any matrix A, the statement

permute(A,[2 1])

is the same as A'.

For example:

A = [1 2; 3 4]; permute(A,[2 1])
ans =
 1 3
 2 4

The following code permutes a three-dimensional array:

X = rand(12,13,14);
Y = permute(X,[2 3 1]);
size(Y)
ans =
 13 14 12

See Also ipermute

persistent

2-82

2persistentPurpose Define persistent variable

Syntax persistent X Y Z

Description persistent X Y Z defines X, Y, and Z as variables that are local to the function
in which they are declared yet their values are retained in memory between
calls to the function. Persistent variables are similar to global variables
because MATLAB creates permanent storage for both. They differ from global
variables in that persistent variables are known only to the function in which
they are declared. This prevents persistent variables from being changed by
other functions or from the MATLAB command line.

Persistent variables are cleared when the M-file is cleared from memory or
when the M-file is changed. To keep an M-file in memory until MATLAB quits,
use mlock.

If the persistent variable does not exist the first time you issue the persistent
statement, it is initialized to the empty matrix.

It is an error to declare a variable persistent if a variable with the same name
exists in the current workspace.

Remarks There is no function form of the persistent command (i.e., you cannot use
parentheses and quote the variable names).

See Also clear, global, mislocked, mlock, munlock

pi

2-83

2piPurpose Ratio of a circle’s circumference to its diameter,

Syntax pi

Description pi returns the floating-point number nearest the value of . The expressions
4*atan(1) and imag(log(-1)) provide the same value.

Examples The expression sin(pi) is not exactly zero because pi is not exactly .

sin(pi)

ans =

 1.2246e-16

See Also ans, eps, i, Inf, j, NaN

π

π

π

pie

2-84

2piePurpose Pie chart

Syntax pie(X)
pie(X,explode)
h = pie(...)

Description pie(X) draws a pie chart using the data in X. Each element in X is represented
as a slice in the pie chart.

pie(X,explode) offsets a slice from the pie. explode is a vector or matrix of
zeros and nonzeros that correspond to X. A non-zero value offsets the
corresponding slice from the center of the pie chart, so that X(i,j) is offset
from the center if explode(i,j) is nonzero. explode must be the same size as
X.

h = pie(...) returns a vector of handles to patch and text graphics objects.

Remarks The values in X are normalized via X/sum(X) to determine the area of each slice
of the pie. If sum(X)≤1, the values in X directly specify the are of the pie slices.
MATLAB draws only a partial pie if sum(X)<1.

Examples Emphasize the second slice in the chart by setting its corresponding explode
element to 1.

x = [1 3 0.5 2.5 2];
explode = [0 1 0 0 0];
pie(x,explode)

pie

2-85

colormap jet

See Also pie3

11%

33%

6%

28%

22%

pie3

2-86

2pie3Purpose Three-dimensional pie chart

Syntax pie3(X)
pie3(X,explode)
h = pie3(...)

Description pie3(X) draws a three-dimensional pie chart using the data in X. Each element
in X is represented as a slice in the pie chart.

pie3(X,explode) specifies whether to offset a slice from the center of the pie
chart. X(i,j) is offset from the center of the pie chart if explode(i,j) is
nonzero. explode must be the same size as X.

h = pie(...) returns a vector of handles to patch, surface, and text graphics
objects.

Remarks The values in X are normalized via X/sum(X) to determine the area of each slice
of the pie. If sum(X)≤1, the values in X directly specify the area of the pie slices.
MATLAB draws only a partial pie if sum(X)<1.

Examples Offset a slice in the pie chart by setting the corresponding explode element to
1:

x = [1 3 0.5 2.5 2]
explode = [0 1 0 0 0]
pie3(x,explode)
colormap hsv

28%

6%

22%

33%

11%

pie3

2-87

See Also pie

pinv

2-88

2pinvPurpose Moore-Penrose pseudoinverse of a matrix

Syntax B = pinv(A)
B = pinv(A,tol)

Definition The Moore-Penrose pseudoinverse is a matrix B of the same dimensions as A'
satisfying four conditions:

A*B*A = A
B*A*B = B
A*B is Hermitian
B*A is Hermitian

The computation is based on svd(A) and any singular values less than tol are
treated as zero.

Description B = pinv(A) returns the Moore-Penrose pseudoinverse of A.

B = pinv(A,tol) returns the Moore-Penrose pseudoinverse and overrides the
default tolerance, max(size(A))*norm(A)*eps.

Examples If A is square and not singular, then pinv(A) is an expensive way to compute
inv(A). If A is not square, or is square and singular, then inv(A) does not exist.
In these cases, pinv(A) has some of, but not all, the properties of inv(A).

If A has more rows than columns and is not of full rank, then the
overdetermined least squares problem

minimize norm(A*x-b)

does not have a unique solution. Two of the infinitely many solutions are

x = pinv(A)*b

and

y = A\b

These two are distinguished by the facts that norm(x) is smaller than the norm
of any other solution and that y has the fewest possible nonzero components.

For example, the matrix generated by

pinv

2-89

A = magic(8); A = A(:,1:6)

is an 8-by-6 matrix that happens to have rank(A) = 3.

A =
64 2 3 61 60 6
9 55 54 12 13 51

17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62

The right-hand side is b = 260*ones(8,1),

b =
260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns, one
solution to A*x = b would be a vector of all 1’s. With only six columns, the
equations are still consistent, so a solution exists, but it is not all 1’s. Since the
matrix is rank deficient, there are infinitely many solutions. Two of them are

x = pinv(A)*b

which is

x =
1.1538
1.4615
1.3846
1.3846
1.4615
1.1538

pinv

2-90

and

y = A\b

which produces this result.

Warning: Rank deficient, rank = 3 tol = 1.8829e-013.
y =
 4.0000
 5.0000
 0
 0
 0
 -1.0000

Both of these are exact solutions in the sense that norm(A∗ x-b) and
norm(A∗ y-b) are on the order of roundoff error. The solution x is special because

norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 6.4807

On the other hand, the solution y is special because it has only three nonzero
components.

See Also inv, qr, rank, svd

planerot

2-91

2planerotPurpose Givens plane rotation

Syntax [G,y] = planerot(x)

Description [G,y] = planerot(x) where x is a 2-component column vector, returns a
2-by-2 orthogonal matrix G so that y = G*x has y(2) = 0.

Examples x = [3 4];
[G,y] = planerot(x')

G =
 0.6000 0.8000
 -0.8000 0.6000

y =
 5
 0

See Also qrdelete, qrinsert

plot

2-92

2plotPurpose Linear 2–D plot

Syntax plot(Y)
plot(X1,Y1,...)
plot(X1,Y1,LineSpec,...)
plot(...,'PropertyName',PropertyValue,...)
h = plot(...)

Description plot(Y) plots the columns of Y versus their index if Y is a real number. If Y is
complex, plot(Y) is equivalent to plot(real(Y),imag(Y)). In all other uses of
plot, the imaginary component is ignored.

plot(X1,Y1,...) plots all lines defined by Xn versus Yn pairs. If only Xn or Yn
is a matrix, the vector is plotted versus the rows or columns of the matrix,
depending on whether the vector’s row or column dimension matches the
matrix.

plot(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples, where LineSpec is a line specification that determines line type,
marker symbol, and color of the plotted lines. You can mix Xn,Yn,LineSpec
triples with Xn,Yn pairs: plot(X1,Y1,X2,Y2,LineSpec,X3,Y3).

plot(...,'PropertyName',PropertyValue,...) sets properties to the
specified property values for all line graphics objects created by plot. (See the
“Examples” section for examples.)

h = plot(...) returns a column vector of handles to line graphics objects, one
handle per line.

Remarks If you do not specify a color when plotting more than one line, plot
automatically cycles through the colors in the order specified by the current
axes ColorOrder property. After cycling through all the colors defined by
ColorOrder, plot then cycles through the line styles defined in the axes
LineStyleOrder property.

Note that, by default, MATLAB resets the ColorOrder and LineStyleOrder
properties each time you call plot. If you want changes you make to these
properties to persist, then you must define these changes as default values. For
example,

plot

2-93

set(0,'DefaultAxesColorOrder',[0 0 0],...
'DefaultAxesLineStyleOrder','-|-.|--|:')

sets the default ColorOrder to use only the color black and sets the
LineStyleOrder to use solid, dash-dot, dash-dash, and dotted line styles.

Additional Information

• See the “Creating 2-D Graphs” and “Labeling Graphs” in Using MATLAB
Graphics for more information on plotting.

• See LineSpec for more information on specifying line styles and colors.

Examples Specifying the Color and Size of Markers
You can also specify other line characteristics using graphics properties (see
line for a description of these properties):

• LineWidth – specifies the width (in points) of the line.

• MarkerEdgeColor – specifies the color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram, and the four
triangles).

• MarkerFaceColor – specifies the color of the face of filled markers.

• MarkerSize – specifies the size of the marker in units of points.

For example, these statements,

x = −pi:pi/10:pi;
y = tan(sin(x)) − sin(tan(x));
plot(x,y,'−−rs','LineWidth',2,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor','g',...
 'MarkerSize',10)

plot

2-94

produce this graph.

Specifying Tick Mark Location and Labeling
You can adjust the axis tick-mark locations and the labels appearing at each
tick. For example, this plot of the sine function relabels the x-axis with more
meaningful values,

x = −pi:.1:pi;
y = sin(x);
plot(x,y)
set(gca,'XTick',−pi:pi/2:pi)
set(gca,'XTickLabel',{'−pi','−pi/2','0','pi/2','pi'})

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

plot

2-95

Now add axis labels and annotate the point −pi/4, sin(−pi/4).

Adding Titles, Axis Labels, and Annotations

MATLAB enables you to add axis labels and titles. For example, using the
graph from the previous example, add an x- and y-axis label,

xlabel('−\pi \leq \Theta \leq \pi')
ylabel('sin(\Theta)')
title('Plot of sin(\Theta)')
text(−pi/4,sin(−pi/4),'\leftarrow sin(−\pi\div4)',...

'HorizontalAlignment','left')

Now change the line color to red by first finding the handle of the line object
created by plot and then setting its Color property. In the same statement, set
the LineWidth property to 2 points.

set(findobj(gca,'Type','line','Color',[0 0 1]),...
'Color','red',...

 'LineWidth',2)

−pi −pi/2 0 pi/2 pi
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

plot

2-96

See Also axis, bar, grid, legend, line, LineSpec, loglog, plotyy, semilogx, semilogy,
subplot, xlabel, xlim, ylabel, ylim, zlabel, zlim, stem

See the text String property for a list of symbols and how to display them.

See plotedit for information on using the plot annotation tools in the figure
window toolbar.

−pi −pi/2 0 pi/2 pi
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−π ≤ Θ ≤ π

si
n(
Θ

)

Plot of sin(Θ)

← sin(−π÷4)

plot3

2-97

2plot3Purpose Linear 3-D plot

Syntax plot3(X1,Y1,Z1,...)
plot3(X1,Y1,Z1,LineSpec,...)
plot3(...,'PropertyName',PropertyValue,...)
h = plot3(...)

Description The plot3 function displays a three-dimensional plot of a set of data points.

plot3(X1,Y1,Z1,...), where X1, Y1, Z1 are vectors or matrices, plots one or
more lines in three-dimensional space through the points whose coordinates
are the elements of X1, Y1, and Z1.

plot3(X1,Y1,Z1,LineSpec,...) creates and displays all lines defined by the
Xn,Yn,Zn,LineSpec quads, where LineSpec is a line specification that
determines line style, marker symbol, and color of the plotted lines.

plot3(...,'PropertyName',PropertyValue,...) sets properties to the
specified property values for all Line graphics objects created by plot3.

h = plot3(...) returns a column vector of handles to line graphics objects,
with one handle per line.

Remarks If one or more of X1, Y1, Z1 is a vector, the vectors are plotted versus the rows
or columns of the matrix, depending whether the vectors’ lengths equal the
number of rows or the number of columns.

You can mix Xn,Yn,Zn triples with Xn,Yn,Zn,LineSpec quads, for example,

plot3(X1,Y1,Z1,X2,Y2,Z2,LineSpec,X3,Y3,Z3)

See LineSpec and plot for information on line types and markers.

Examples Plot a three-dimensional helix.

t = 0:pi/50:10∗ pi;
plot3(sin(t),cos(t),t)
grid on

plot3

2-98

axis square

See Also axis, bar3, grid, line, LineSpec, loglog, plot, semilogx, semilogy, subplot

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

25

30

35

plotedit

2-99

2ploteditPurpose Start plot edit mode to allow editing and annotation of plots

Syntax plotedit on
plotedit off
plotedit
plotedit('state')
plotedit(h)
plotedit(h,'state')

Description plotedit on starts plot edit mode for the current figure, allowing you to use a
graphical interface to annotate and edit plots easily. In plot edit mode, you can
label axes, chang line styles, and adding text, line, and arrow annotations.

plotedit off ends plot mode for the current figure.

plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure handle
h.

plotedit('state') specifies the plotedit state for the current figure. Values
for state can be as shown.

Note hidetoolsmenu is intended for GUI developers who do not want the
Tools menu to appear in applications that use the figure window.

plotedit(h,'state') specifies the plotedit state for figure handle h.

Value for state Description

on Starts plot edit mode

off Ends plot edit mode

showtoolsmenu Displays the Tools menu in the menu bar

hidetoolsmenu Removes the Tools menu from the menu bar

plotedit

2-100

Remarks Plot Editing Mode Graphical Interface Components

Help
For more information about editing plots, select Plot Editing from the Figure
window Help menu. For help with other MATLAB graphics features, select
Creating Plots.

Examples Start plot edit mode for figure 2:

plotedit(2)

End plot edit mode for figure 2:

plotedit(2, 'off')

Hide the Tools menu for the current figure:

To start plot edit mode, click
this button.

Use these toolbar buttons to add text, arrows, and lines.

Add objects or edit existing
objects in the plot through
the Edit, Insert, and Tools
menus.

Access object-specif ic plot
edit functions through
context-sensitive pop-up
menus.

Position labels, legends,
and other object by clicking
and dragging.

plotedit

2-101

plotedit('hidetoolsmenu')

See Also axes, line, open, plot, print, saveas, text, propedit

Remarks Property Editor Graphical User Interface Components

See Also plotedit

Use these buttons to move back and forth among the graphics objects you have edited.

Use menus to specify
values.

Tabbed panels provide
access to groups of
properties.

Check this box to see the
effect of your changes as you
make them.

Apply your changes.

Navigation bar shows object
being edited and provides
for navigation between
objects.

plotmatrix

2-102

2plotmatrixPurpose Draw scatter plots

Syntax plotmatrix(X,Y)
plotmatrix(...,'LineSpec')
[H,AX,BigAx,P] = plotmatrix(...)

Description plotmatrix(X,Y) scatter plots the columns of X against the columns of Y. If X
is p-by-m and Y is p-by-n, plotmatrix produces an n-by-m matrix of axes.
plotmatrix(Y) is the same as plotmatrix(Y,Y) except that the diagonal is
replaced by hist(Y(:,i)).

plotmatrix(...,'LineSpec') uses a LineSpec to create the scatter plot.The
default is '.' .

[H,AX,BigAx,P] = plotmatrix(...) returns a matrix of handles to the objects
created in H, a matrix of handles to the individual subaxes in AX, a handle to a
big (invisible) axes that frames the subaxes in BigAx, and a matrix of handles
for the histogram plots in P. BigAx is left as the current axes so that a
subsequent title, xlabel, or ylabel commands are centered with respect to
the matrix of axes.

Examples Generate plots of random data.

x = randn(50,3); y = x*[-1 2 1;2 0 1;1 -2 3;]';
plotmatrix(y,'*r')

plotmatrix

2-103

See Also scatter, scatter3

−10 −5 0 5 10−5 0 5 10−5 0 5

−10

−5

0

5

10

−5

0

5

10

−5

0

5

plotyy

2-104

2plotyyPurpose Create graphs with y axes on both left and right side

Syntax plotyy(X1,Y1,X2,Y2)
plotyy(X1,Y1,X2,Y2,'function')
plotyy(X1,Y1,X2,Y2,'function1','function2')
[AX,H1,H2] = plotyy(...)

Description plotyy(X1,Y1,X2,Y2) plots X1 versus Y1 with y-axis labeling on the left and
plots X2 versus Y2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,'function') uses the plotting function specified by the
string 'function' instead of plot to produce each graph. 'function' can be plot,
semilogx, semilogy, loglog, stem or any MATLAB function that accepts the
syntax:

h = function(x,y)

plotyy(X1,Y1,X2,Y2,'function1','function2') uses function1(X1,Y1) to
plot the data for the left axis and function2(X2,Y2) to plot the data for the
right axis.

[AX,H1,H2] = plotyy(...) returns the handles of the two axes created in AX
and the handles of the graphics objects from each plot in H1 and H2. AX(1) is
the left axes and AX(2) is the right axes.

Examples This example graphs two mathematical functions using plot as the plotting
function. The two y-axes enable you to display both sets of data on one graph
even though relative values of the data are quite different.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');

You can use the handles returned by plotyy to label the axes and set the line
styles used for plotting. With the axes handles you can specify the YLabel
properties of the left- and right-side y-axis:

set(get(AX(1),'Ylabel'),'String','Left Y-axis')
set(get(AX(2),'Ylabel'),'String','Right Y-axis')

Use the xlabel and title commands to label the x-axis and add a title:

plotyy

2-105

xlabel('Zero to 20 \musec.')
title('Labeling plotyy')

Use the line handles to set the LineStyle properties of the left- and right-side
plots:

set(H1,'LineStyle','--')
set(H2,'LineStyle',':')

See Also plot, loglog, semilogx, semilogy, axes properties: XAxisLocation,
YAxisLocation

The axes chapter in the Using MATLAB Graphics manual for information on
multi-axis axes.

0 5 10 15 20
−200

−150

−100

−50

0

50

100

150

200

Le
ft

Y
−

ax
is

Zero to 20 µsec.

Labeling plotyy

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

R
ig

ht
 Y

−
ax

is

pol2cart

2-106

2pol2cartPurpose Transform polar or cylindrical coordinates to Cartesian

Syntax [X,Y] = pol2cart(THETA,RHO)
[X,Y,Z] = pol2cart(THETA,RHO,Z)

Description [X,Y] = pol2cart(THETA,RHO) transforms the polar coordinate data stored in
corresponding elements of THETA and RHO to two-dimensional Cartesian, or xy,
coordinates. The arrays THETA and RHO must be the same size (or either can be
scalar). The values in THETA must be in radians.

[X,Y,Z] = pol2cart(THETA,RHO,Z) transforms the cylindrical coordinate
data stored in corresponding elements of THETA, RHO, and Z to
three-dimensional Cartesian, or xyz, coordinates. The arrays THETA , RHO, and
Z must be the same size (or any can be scalar). The values in THETA must be in
radians.

Algorithm The mapping from polar and cylindrical coordinates to Cartesian coordinates
is:

See Also cart2pol, cart2sph, sph2cart

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

Cylindrical to Cartesian Mapping

Z

Y

X

rho
theta

P

z

Polar to Cartesian Mapping

P

X

Y

rh
o

theta

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

z = z

polar

2-107

2polarPurpose Plot polar coordinates

Syntax polar(theta,rho)
polar(theta,rho,LineSpec)

Description The polar function accepts polar coordinates, plots them in a Cartesian plane,
and draws the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta versus the
radius rho. theta is the angle from the x-axis to the radius vector specified in
radians; rho is the length of the radius vector specified in dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot symbol,
and color for the lines drawn in the polar plot.

Examples Create a simple polar plot using a dashed, red line:
t = 0:.01:2∗ pi;
polar(t,sin(2∗ t).∗ cos(2∗ t),'−−r')

 0.125

 0.25

 0.375

 0.5

30

210

60

240

90

270

120

300

150

330

180 0

polar

2-108

See Also cart2pol, compass, LineSpec, plot, pol2cart, rose

poly

2-109

2polyPurpose Polynomial with specified roots

Syntax p = poly(A)
p = poly(r)

Description p = poly(A) where A is an n-by-n matrix returns an n+1 element row vector
whose elements are the coefficients of the characteristic polynomial,

. The coefficients are ordered in descending powers: if a vector c has
n+1 components, the polynomial it represents is

p = poly(r) where r is a vector returns a row vector whose elements are the
coefficients of the polynomial whose roots are the elements of r.

Remarks Note the relationship of this command to

r = roots(p)

which returns a column vector whose elements are the roots of the polynomial
specified by the coefficients row vector p. For vectors, roots and poly are
inverse functions of each other, up to ordering, scaling, and roundoff error.

Examples MATLAB displays polynomials as row vectors containing the coefficients
ordered by descending powers. The characteristic equation of the matrix

A =

1 2 3
4 5 6
7 8 0

is returned in a row vector by poly:

p = poly(A)

p =
1 -6 -72 -27

The roots of this polynomial (eigenvalues of matrix A) are returned in a column
vector by roots:

r = roots(p)

det sl A–()
c1sn … cns cn 1++ + +

poly

2-110

r =

12.1229
-5.7345
-0.3884

Algorithm The algorithms employed for poly and roots illustrate an interesting aspect of
the modern approach to eigenvalue computation. poly(A) generates the
characteristic polynomial of A, and roots(poly(A)) finds the roots of that
polynomial, which are the eigenvalues of A. But both poly and roots use eig,
which is based on similarity transformations. The classical approach, which
characterizes eigenvalues as roots of the characteristic polynomial, is actually
reversed.

If A is an n-by-n matrix, poly(A) produces the coefficients c(1) through
c(n+1), with c(1) = 1, in

The algorithm is

z = eig(A);
c = zeros(n+1,1); c(1) = 1;
for j = 1:n

c(2:j+1) = c(2:j+1)-z(j)*c(1:j);
end

This recursion is easily derived by expanding the product.

It is possible to prove that poly(A) produces the coefficients in the
characteristic polynomial of a matrix within roundoff error of A. This is true
even if the eigenvalues of A are badly conditioned. The traditional algorithms
for obtaining the characteristic polynomial, which do not use the eigenvalues,
do not have such satisfactory numerical properties.

See Also conv, polyval, residue, roots

det λI A–() c1λ
n … cnλ cn 1++ + +=

λ λ 1–() λ λ 2–()… λ λn–()

polyarea

2-111

2polyareaPurpose Area of polygon

Syntax A = polyarea(X,Y)
A = polyarea(X,Y,dim)

Description A = polyarea(X,Y) returns the area of the polygon specified by the vertices in
the vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area of
polygons defined by the columns X and Y.

If X and Y are multidimensional arrays, polyarea returns the area of the
polygons in the first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by scalar dim.

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
A = polyarea(xv,yv);
plot(xv,yv); title(['Area = ' num2str(A)]); axis image

See Also convhull, inpolygon, rectint

−0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Area = 2.3776

polyder

2-112

2polyderPurpose Polynomial derivative

Syntax k = polyder(p)
k = polyder(a,b)
[q,d] = polyder(b,a)

Description The polyder function calculates the derivative of polynomials, polynomial
products, and polynomial quotients. The operands a, b, and p are vectors whose
elements are the coefficients of a polynomial in descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the polynomials a
and b.

[q,d] = polyder(b,a) returns the numerator q and denominator d of the
derivative of the polynomial quotient b/a.

Examples The derivative of the product

is obtained with

a = [3 6 9];
b = [1 2 0];
k = polyder(a,b)
k =

12 36 42 18

This result represents the polynomial

See Also conv, deconv

3x2 6x 9+ +() x2 2x+()

12x3 36x2 42x 18+ + +

polyeig

2-113

2polyeigPurpose Polynomial eigenvalue problem

Syntax [X,e] = polyeig(A0,A1,...Ap)
e = polyeig(A0,A1,..,Ap)

Description [X,e] = polyeig(A0,A1,...Ap) solves the polynomial eigenvalue problem of
degree p

where polynomial degree p is a non-negative integer, and A0,A1,...Ap are
input matrices of order n. Output matrix X, of size n-by-n*p, contains
eigenvectors in its columns. Output vector e, of length n*p, contains
eigenvalues.

If lambda is the jth eigenvalue in e, and x is the jth column of eigenvectors in
X, then (A0 + lambda*A1 + ... + lambda^p*Ap)*x is approximately 0.

e = polyeig(A0,A1,..,Ap) is a vector of length n*p whose elements are the
eigenvalues of the polynomial eigenvalue problem.

Remarks Based on the values of p and n, polyeig handles several special cases:

• p = 0, or polyeig(A) is the standard eigenvalue problem: eig(A).

• p = 1, or polyeig(A,B) is the generalized eigenvalue problem: eig(A,-B).

• n = 1, or polyeig(a0,a1,...ap) for scalars a0, a1 ..., ap is the standard
polynomial problem: roots([ap ... a1 a0]).

Algorithm If both A0 and Ap are singular, the problem is potentially ill posed; solutions
might not exist or they might not be unique. In this case, the computed
solutions may be inaccurate. polyeig attempts to detect this situation and
display an appropriate warning message. If either one, but not both, of A0 and
Ap is singular, the problem is well posed but some of the eigenvalues may be
zero or infinite (Inf).

The polyeig function uses the QZ factorization to find intermediate results in
the computation of generalized eigenvalues. It uses these intermediate results
to determine if the eigenvalues are well-determined. See the descriptions of eig
and qz for more on this.

A0 λA1 … λP Ap+ + +()x 0=

polyeig

2-114

See Also eig, qz

polyfit

2-115

2polyfitPurpose Polynomial curve fitting

Syntax p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n
that fits the data, p(x(i)) to y(i), in a least squares sense. The result p is a
row vector of length n+1 containing the polynomial coefficients in descending
powers

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p and a
structure S for use with polyval to obtain error estimates or predictions. If the
errors in the data y are independent normal with constant variance, polyval
produces error bounds that contain at least 50% of the predictions.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

where and . mu is the two-element vector .
This centering and scaling transformation improves the numerical
properties of both the polynomial and the fitting algorithm.

Examples This example involves fitting the error function, erf(x), by a polynomial in x.
This is a risky project because erf(x) is a bounded function, while polynomials
are unbounded, so the fit might not be very good.

First generate a vector of x points, equally spaced in the interval ; then
evaluate erf(x) at those points.

x = (0: 0.1: 2.5)';
y = erf(x);

The coefficients in the approximating polynomial of degree 6 are

p = polyfit(x,y,6)

p x() p1xn p2xn 1– … pnx pn 1++ + + +=

x̂
x µ1–

µ2
---------------=

µ1 mean x()= µ2 std x()= µ1 µ2,[]

0 2.5,[]

polyfit

2-116

p =

0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

There are seven coefficients and the polynomial is

To see how good the fit is, evaluate the polynomial at the data points with

f = polyval(p,x);

A table showing the data, fit, and error is

table = [x y f y-f]

table =

0 0 0.0004 -0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 -0.0001
0.4000 0.4284 0.4288 -0.0004
...
2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 -0.0001
2.3000 0.9989 0.9991 -0.0003
2.4000 0.9993 0.9995 -0.0002
2.5000 0.9996 0.9994 0.0002

So, on this interval, the fit is good to between three and four digits. Beyond this
interval the graph shows that the polynomial behavior takes over and the
approximation quickly deteriorates.

x = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
axis([0 5 0 2])

0.0084x6 0.0983x5
– 0.4217x4 0.7435x3

– 0.1471x2 1.1064x 0.0004+ + + +

polyfit

2-117

Algorithm The polyfit M-file forms the Vandermonde matrix, , whose elements are
powers of .

It then uses the backslash operator, \, to solve the least squares problem

You can modify the M-file to use other functions of as the basis functions.

See Also poly, polyval, roots

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
o

o

o

o

o

o

o
o

o
o

o
o o

V
x

vi j, xi
n j–=

V p y≅

x

polyint

2-118

2polyintPurpose Integrate polynomial analytically

Syntax polyint(p,k)
polyint(p)

Description polyint(p,k) returns a polynomial representing the integral of polynomial p,
using a scalar constant of integration k.

polyint(p) assumes a constant of integration k=0.

See Also polyder, polyval, polyvalm, polyfit

polyval

2-119

2polyvalPurpose Polynomial evaluation

Syntax y = polyval(p,x)
y = polyval(p,x,[],mu)
[y,delta] = polyval(p,x,S)
[y,delta] = polyval(p,x,S,mu)

Description y = polyval(p,x) returns the value of a polynomial of degree n evaluated at
x. The input argument p is a vector of length n+1 whose elements are the
coefficients in descending powers of the polynomial to be evaluated.

x can be a matrix or a vector. In either case, polyval evaluates p at each
element of x.

y = polyval(p,x,[],mu) uses in place of . In this equation,
 and . The centering and scaling parameters

mu = are optional output computed by polyfit.

[y,delta] = polyval(p,x,S) and [y,delta] = polyval(p,x,S,mu) use the
optional output structure S generated by polyfit to generate error estimates,
y±delta. If the errors in the data input to polyfit are independent normal
with constant variance, y±delta contains at least 50% of the predictions.

Remarks The polyvalm(p,x) function, with x a matrix, evaluates the polynomial in a
matrix sense. See polyvalm for more information.

Examples The polynomial is evaluated at = 5, 7, and 9 with

p = [3 2 1];
polyval(p,[5 7 9])

which results in

ans =

 86 162 262

For another example, see polyfit.

y p1xn p2xn 1– … pnx pn 1++ + + +=

x̂ x µ1–() µ2⁄= x
µ1 mean x()= µ2 std x()=

µ1 µ2,[]

p x() 3x2 2x 1+ += x

polyval

2-120

See Also polyfit, polyvalm

polyvalm

2-121

2polyvalmPurpose Matrix polynomial evaluation

Syntax Y = polyvalm(p,X)

Description Y = polyvalm(p,X) evaluates a polynomial in a matrix sense. This is the same
as substituting matrix X in the polynomial p.

Polynomial p is a vector whose elements are the coefficients of a polynomial in
descending powers, and X must be a square matrix.

Examples The Pascal matrices are formed from Pascal’s triangle of binomial coefficients.
Here is the Pascal matrix of order 4.

X = pascal(4)
X =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

Its characteristic polynomial can be generated with the poly function.

p = poly(X)
p =

1 -29 72 -29 1

This represents the polynomial .

Pascal matrices have the curious property that the vector of coefficients of the
characteristic polynomial is palindromic; it is the same forward and backward.

Evaluating this polynomial at each element is not very interesting.

polyval(p,X)
ans =

16 16 16 16
16 15 -140 -563
16 -140 -2549 -12089
16 -563 -12089 -43779

But evaluating it in a matrix sense is interesting.

polyvalm(p,X)

x4 29x3– 72x2 29x– 1+ +

polyvalm

2-122

ans =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The result is the zero matrix. This is an instance of the Cayley-Hamilton
theorem: a matrix satisfies its own characteristic equation.

See Also polyfit, polyval

pow2

2-123

2pow2Purpose Base 2 power and scale floating-point numbers

Syntax X = pow2(Y)
X = pow2(F,E)

Description X = pow2(Y) returns an array X whose elements are 2 raised to the power Y.

X = pow2(F,E) computes for corresponding elements of F and E.
The result is computed quickly by simply adding E to the floating-point
exponent of F. Arguments F and E are real and integer arrays, respectively.

Remarks This function corresponds to the ANSI C function ldexp() and the IEEE
floating-point standard function scalbn().

Examples For IEEE arithmetic, the statement X = pow2(F,E) yields the values:

F E X
1/2 1 1
pi/4 2 pi
-3/4 2 -3
1/2 -51 eps
1-eps/2 1024 realmax
1/2 -1021 realmin

See Also log2, exp, hex2num, realmax, realmin

The arithmetic operators ^ and .^

x f * 2e
=

ppval

2-124

2ppvalPurpose Evaluate piecewise polynomial.

Syntax v = ppval(pp,xx)
v = ppval(xx,pp)

Description v = ppval(pp,xx) returns the value at the points xx of the piecewise
polynomial contained in pp, as constructed by spline or the spline utility mkpp.

v = ppval(xx,pp) returns the same result but can be used with functions like
fminbnd, fzero and quad that take a function as an argument.

Examples Compare the results of integrating the function cos

a = 0; b = 10;
int1 = quad(@cos,a,b,[],[])

int1 =
 -0.5440

with the results of integrating the piecewise polynomial pp that approximates
the cosine function by interpolating the computed values x and y.

x = a:b;
y = cos(x);
pp = spline(x,y);
int2 = quad(@ppval,a,b,[],[],pp)

int2 =
 -0.5485

int1 provides the integral of the cosine function over the interval [a,b], while
int2 provides the integral over the same interval of the piecewise polynomial
pp.

See Also mkpp, spline, unmkpp

primes

2-125

2primesPurpose Generate list of prime numbers

Syntax p = primes(n)

Description p = primes(n) returns a row vector of the prime numbers less than or equal
to n. A prime number is one that has no factors other than 1 and itself.

Examples p = primes(37)

p =

2 3 5 7 11 13 17 19 23 29 31 37

See Also factor

print, printopt

2-126

2print, printoptPurpose Create hardcopy output

Syntax print
print -device -options filename
[pcmd,dev] = printopt

Description print and printopt produce hardcopy output. All arguments to the print
command are optional. You can use them in any combination or order.

print sends the contents of the current figure, including bitmap
representations of any user interface controls, to the printer using the device
and system printing command defined by printopt.

print -device specifies a print driver (such as color PostScript) or a
graphics-file format (such as TIFF). If the -device is set to -dmeta or -dbitmap
(Windows only), the figure is saved to the clipboard. If you omit -device, print
uses the default value stored by printopt. The Devices section lists all
supported device types.

print -options specifies print options that modify the action of the print
command. (For example, the –noui option suppresses printing of user interface
controls.) The Options section lists available options.

print filename directs the output to the file designated by filename. If
filename does not include an extension, print appends an appropriate
extension, depending on the driver or format specified (e.g., .ps or.tif).

print(...) is the function form of print. It enables you to pass variables for
any input arguments. This form is useful passing filenames and handles. See
Batch Processing for an example.

[pcmd,dev] = printopt returns strings containing the current
system-dependent printing command and output device. printopt is an M-file
used by print to produce the hardcopy output. You can edit the M-file
printopt.m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the command that
print uses to send a file to the printer. dev contains the printer driver or

print, printopt

2-127

graphics format option for the print command. Their defaults are platform
dependent.

Drivers The table below shows the complete list of printer drivers supported by
MATLAB. If you do not specify a driver, MATLAB uses the default setting
shown in the previous table.

Some of the drivers are available from a product called Ghostscript, which is
shipped with MATLAB. The last column indicates when Ghostscript is used.

Some drivers are not available on all platforms. This is noted in the first
column of the table.

Platform System Printing
Command

Driver or Format

UNIX lpr –r –s –dps2

Windows COPY /B %s LPT1: –dwin

Printer Driver MATLAB call Ghost-
Script

Canon BubbleJet BJ10e print -dbj10e Yes

Canon BubbleJet BJ200 color print -dbj200 Yes

Canon Color BubbleJet BJC-70/BJC-600/BJC-4000 print -dbjc600 Yes

Canon Color BubbleJet BJC-800 print -dbjc800 Yes

DEC LN03 print -dln03 Yes

Epson and compatible 9- or 24-pin dot matrix print drivers print -depson Yes

Epson and compatible 9-pin with interleaved lines (triple
resolution)

print -deps9high Yes

Epson LQ-2550 and compatible; color (not supported on
HP-700)

print -depsonc Yes

Fujitsu 3400/2400/1200 print -depsonc Yes

print, printopt

2-128

HP DesignJet 650C color (not supported on Windows or
DEC Alpha)

print -ddnj650c Yes

HP DeskJet 500 print -ddjet500 Yes

HP DeskJet 500C (creates black-and-white output) print -dcdjmono Yes

HP DeskJet 500C (with 24 bit/pixel color and high-quality
Floyd-Steinberg color dithering) (not supported on Windows
or DEC Alpha)

print -dcdjcolor Yes

HP DeskJet 500C/540C color (not supported on Windows or
DEC Alpha)

print -dcdj500 Yes

HP Deskjet 550C color (not supported on Windows or DEC
Alpha)

print -dcdj550 Yes

HP DeskJet and DeskJet Plus print -ddeskjet Yes

HP LaserJet print -dlaserjet Yes

HP LaserJet+ print -dljetplus Yes

HP LaserJet IIP print -dljet2p Yes

HP LaserJet III print -dljet3 Yes

HP LaserJet 4.5L and 5P print -dljet4 Yes

HP LaserJet 5 and 6 print -dpxlmono Yes

HP PaintJet color print -dpaintjet Yes

HP PaintJet XL color print -dpjxl Yes

HP PaintJet XL color print -dpjetxl Yes

HP PaintJet XL300 color (not supported on Windows or
DEC Alpha)

print -dpjxl300 Yes

HPGL for HP 7475A and other compatible plotters.
(Renderer cannot be set to Z-buffer.)

print -dhpgl Yes

Printer Driver MATLAB call Ghost-
Script

print, printopt

2-129

Note Generally, Level 2 PostScript files are smaller and render more quickly
when printing than Level 1 PostScript files. However, not all PostScript
printers support Level 2, so determine the capabilities of your printer before
using those drivers. Level 2 PostScript is the default for UNIX. You can
change this default by editing the printopt.m file.

Graphics
Format Files

To save your figure as a graphics-format file, specify a format switch and
filename. To set the resolution of the output file for a built-in MATLAB format,
use the -r switch. (For example, -r300 sets the output resolution to 300 dots
per inch.) The -r switch is also supported for Windows Enhanced Metafiles but
is not supported for Ghostscript formats.

The table below shows the supported output formats for exporting from
MATLAB and the switch settings to use. In some cases, a format is available
both as a MATLAB output filter and as a Ghostscript output filter. The first
column indicates this by showing “MATLAB” or “Ghostscript” in parentheses.
All formats are supported on both the PC and UNIX platforms.

IBM 9-pin Proprinter print -dibmpro Yes

PostScript black and white print -dps No

PostScript color print -dpsc No

PostScript Level 2 black and white print -dps2 No

PostScript Level 2 color print -dpsc2 No

Windows color (Windows only) print -dwinc No

Windows monochrome (Windows only) print -dwin No

Printer Driver MATLAB call Ghost-
Script

print, printopt

2-130

File Format Option String
(Command line
only)

BMP (Ghostscript) Monochrome BMP -dbmpmono

BMP (Ghostscript) 24-bit BMP -dbmp16m

BMP (Ghostscript) 8-bit (256-color) BMP *this format
uses a fixed colormap

-dbmp256

BMP (MATLAB) 24-bit -dbmp

EMF (MATLAB) -dmeta

EPS (MATLAB) black and white -deps

EPS (MATLAB) color -depsc

EPS (MATLAB) Level 2 black and white -deps2

EPS (MATLAB) Level 2 color -depsc2

HDF (MATLAB) 24-bit -dhdf

ILL (Adobe Illustrator) (MATLAB) -dill

JPEG (MATLAB) 24-bit -djpeg

PBM (Ghostscript) (plain format) 1-bit -dpbm

PBM (Ghostscript) (raw format) 1-bit -dpbmraw

PCX (Ghostscript) 1-bit -dpcxmono

PCX (Ghostscript) 24-bit color PCX file format, three
8-bit planes

-dpcx24b

PCX (Ghostscript) 8-bit Newer color PCX file format
(256-color)

-dpcx256

PCX (Ghostscript) Older color PCX file format (EGA/
VGA, 16-color)

-dpcx16

print, printopt

2-131

The TIFF image format is supported on all platforms by almost all word
processors for importing images. JPEG is a lossy, highly compressed format
that is supported on all platforms for image processing and for inclusion into
HTML documents on the World Wide Web. To create these formats, MATLAB
renders the figure using the Z-buffer rendering method and the resulting
bitmap is then saved to the specified file.

Options This table summarizes options that you can specify for print. The second
column also shows which tutorial sections contain more detailed information.
The sections listed are located under Printing and Exporting Figures with
MATLAB.

PCX (MATLAB) 8-bit -dpcx

PDF (Ghostscript) Color PDF file Format -dpdf

PGM (Ghostscript) Portable Graymap (plain format) -dpgm

PGM (Ghostscript) Portable Graymap (raw format) -dpgmraw

PNG (MATLAB) 24-bit -dpng

PPM (Ghostscript) Portable Pixmap, plain format -dppm

PPM (Ghostscript) Portable Pixmap raw format -dppmraw

TIFF (MATLAB) 24-bit -dtiff or -dtiffn

TIFF preview for EPS Files -tiff

File Format Option String
(Command line
only)

Option Description

-adobecset PostScript only. Use PostScript default character set encoding. See Early
PostScript 1 Printers.

-append PostScript only. Append figure to existing PostScript file. See Appending
Figures to a PostScript File.

print, printopt

2-132

-cmyk PostScript only. Print with CMYK colors instead of RGB. See Creating CMYK
Output.

-device Printer driver to use. See Specifying a Printer Driver.

-dsetup Display the Print Setup dialog.

-fhandle Handle of figure to print. Note that you cannot specify both this option and
the -swindowtitle option. See Which Figure Is Printed.

-loose PostScript and Ghostscript only. Use loose bounding box for PostScript. See
Producing Uncropped Output.

-noui Suppress printing of user interface controls. See Excluding User Interface
Controls from Output.

-OpenGL Render using the OpenGL algorithm. Note that you cannot specify this
method in conjunction with -zbuffer or -painters. See Setting the
Rendering Method.

-painters Render using the Painter’s algorithm. Note that you cannot specify this
method in conjunction with -zbuffer or -OpenGL. See Setting the Rendering
Method.

-Pprinter UNIX only. Specify name of printer to use. See Specifying a Printer.

-rnumber PostScript and Ghostscript only. Specify resolution in dots per inch. See
Setting Resolution.

-swindowtitle Specify name of Simulink system window to print. Note that you cannot
specify both this option and the -fhandle option. See Which Figure Is
Printed.

-v Windows only. Display the Windows Print dialog box. The v stands for
“verbose mode.”

-zbuffer Render using the Z-buffer algorithm. Note that you cannot specify this
method in conjunction with -OpenGL or -painters. See Setting the Rendering
Method.

Option Description

print, printopt

2-133

Paper Sizes MATLAB supports a number of standard paper sizes. You can select from the
following list by setting the PaperType property of the figure or selecting a
supported paper size from the Print dialog box.

Property Value Size (Width-by-Height)

usletter 8.5-by-11 inches

uslegal 11-by-14 inches

tabloid 11-by-17 inches

A0 841-by-1189mm

A1 594-by-841mm

A2 420-by-594mm

A3 297-by-420mm

A4 210-by-297mm

A5 148-by-210mm

B0 1029-by-1456mm

B1 728-by-1028mm

B2 514-by-728mm

B3 364-by-514mm

B4 257-by-364mm

B5 182-by-257mm

arch-A 9-by-12 inches

arch-B 12-by-18 inches

arch-C 18-by-24 inches

arch-D 24-by-36 inches

arch-E 36-by-48 inches

print, printopt

2-134

Printing Tips This section includes information about specific printing issues.

Figures with Resize Functions
The print command produces a warning when you print a figure having a
callback routine defined for the figure ResizeFcn. To avoid the warning, set the
figure PaperPositionMode property to auto or select Match Figure Screen
Size in the File->Page Setup... dialog box.

Troubleshooting MS-Windows Printing
If you encounter problems such as segmentation violations, general protection
faults, application errors, or the output does not appear as you expect when
using MS-Windows printer drivers, try the following:

• If your printer is PostScript compatible, print with one of MATLAB’s built-in
PostScript drivers. There are various PostScript device options that you can
use with the print command: they all start with −dps.

• The behavior you are experiencing may occur only with certain versions of
the print driver. Contact the print driver vendor for information on how to
obtain and install a different driver. If you are using Windows 95, try
installing the drivers that ship with the Windows 95 CD-ROM.

• Try printing with one of MATLAB’s built-in Ghostscript devices. These
devices use Ghostscript to convert PostScript files into other formats, such
as HP LaserJet, PCX, Canon BubbleJet, and so on.

• Copy the figure as a Windows Enhanced Metafile using the Edit-->Copy
Figure menu item on the figure window menu or the print −dmeta option at

A 8.5-by-11 inches

B 11-by-17 inches

C 17-by-22 inches

D 22-by-34 inches

E 34-by-43 inches

Property Value Size (Width-by-Height)

print, printopt

2-135

the command line. You can then import the file into another application for
printing.

You can set copy options in the figure’s File-->Preferences...-->Copying
Options dialog box. The Windows Enhanced Metafile clipboard format
produces a better quality image than Windows Bitmap.

Printing Thick Lines on Windows95
Due to a limitation in Windows95, MATLAB is set up to print lines as either:

• Solid lines of the specified thickness (LineWidth)

• Thin (one pixel wide) lines with the specified line style (LineStyle)

If you create lines that are thicker than one pixel and use nonsolid line styles,
MATLAB prints these lines with the specified line style, but one pixel wide
(i.e., as thin lines).

However, you can change this behavior so that MATLAB prints thick, styled
lines as thick, solid lines by editing your matlab.ini file, which is in your
Windows directory. In this file, find the section,

[Matlab Settings]

and in this section change the assignment,

ThinLineStyles=1

to

ThinLineStyles=0

then restart MATLAB.

Printing MATLAB GUIs
You can generally obtain better results when printing a figure window that
contains MATLAB uicontrols by setting these key properties:

• Set the figure PaperPositionMode property to auto. This ensures the printed
version is the same size as the onscreen version. With PaperPositionMode
set to auto MATLAB does not resize the figure to fit the current value of the
PaperPosition. This is particularly important if you have specified a figure

print, printopt

2-136

ResizeFcn because if MATLAB resizes the figure during the print operation,
the ResizeFcn is automatically called.

To set PaperPositionMode on the current figure, use the command:
set(gcf,'PaperPositionMode','auto')

• Set the figure InvertHardcopy property to off. By default, MATLAB
changes the figure background color of printed output to white, but does not
change the color of uicontrols. If you have set the background color to, for
example, match the gray of the GUI devices, you must set InvertHardcopy
to off to preserve the color scheme.

To set InvertHardcopy on the current figure, use the command:
set(gcf,'InvertHardcopy','off')

• Use a color device if you want lines and text that are in color on the screen
to be written to the output file as colored objects. Black and white devices
convert colored lines and text to black or white to provide the best contrast
with the background and to avoid dithering.

• Use the print command’s −loose option to prevent MATLAB from using a
bounding box that is tightly wrapped around objects contained in the figure.
This is important if you have intentionally used space between uicontrols or
axes and the edge of the figure and you want to maintain this appearance in
the printed output.

Notes on Printing Interpolated Shading with PostScript Drivers
MATLAB can print surface objects (such as graphs created with surf or mesh)
using interpolated colors. However, only patch objects that are composed of
triangular faces can be printed using interpolated shading.

Printed output is always interpolated in RGB space, not in the colormap colors.
This means, if you are using indexed color and interpolated face coloring, the
printed output can look different from what is displayed on screen.

PostScript files generated for interpolated shading contain the color
information of the graphics object’s vertices and require the printer to perform
the interpolation calculations. This can take an excessive amount of time and
in some cases, printers may actually “time-out” before finishing the print job.
One solution to this problem is to interpolate the data and generate a greater
number of faces, which can then be flat shaded.

print, printopt

2-137

To ensure that the printed output matches what you see on the screen, print
using the -zbuffer option. To obtain higher resolution (for example, to make
text look better), use the −r option to increase the resolution. There is, however,
a trade-off between the resolution and the size of the created PostScript file,
which can be quite large at higher resolutions. The default resolution of 150 dpi
generally produces good results. You can reduce the size of the output file by
making the figure smaller before printing it and setting the figure
PaperPositionMode to auto, or by just setting the PaperPosition property to
a smaller size.

Note that in some UNIX environments, the default lpr command cannot print
files larger than 1 Mbyte unless you use the −s option, which MATLAB does
by default. See the lpr man page for more information.

Examples Specifying the Figure to Print
You can print a noncurrent figure by specifying the figure’s handle. If a figure
has the title “Figure No. 2”, its handle is 2. The syntax is,

print -fhandle

This example prints the figure whose handle is 2, regardless of which figure is
the current figure.

print -f2

Note Note that you must use the -f option if the figure’s handle is hidden
(i.e., its HandleVisibility property is set to off).

This example saves the figure with the handle -f2 to a PostScript file named
Figure2, which can be printed later.

print -f2 -dps 'Figure2.ps'

If the figure uses noninteger handles, use the figure command to get its value,
and then pass it in as the first argument.

h = figure('IntegerHandle','off')

print, printopt

2-138

print h -depson

You can also pass a figure handle as a variable to the function form of print.
For example,

h = figure; plot(1:4,5:8)
print(h)

This example uses the function form of print to enable a filename to be passed
in as a variable.

filename = 'mydata';
print('-f3', '-dpsc', filename);

(Because a filename is specified, the figure will be printed to a file.)

Specifying the Model to Print
To print a noncurrent Simulink model, use the -s option with the title of the
window. For example, this command prints the Simulink window titled f14.

print -sf14

If the window title includes any spaces, you must call the function form rather
than the command form of print. For example, this command saves a Simulink
window title Thruster Control.

print('-sThruster Control')

To print the current system use:

print -s

For information about issues specific to printing Simulink windows, see the
Simulink documentation.

This example prints a surface plot with interpolated shading. Setting the
current figure’s (gcf) PaperPositionMode to auto enables you to resize the
figure window and print it at the size you see on the screen. See Options and
the previous section for information on the −zbuffer and −r200 options.

surf(peaks)
shading interp
set(gcf,'PaperPositionMode','auto')
print −dpsc2 −zbuffer −r200

print, printopt

2-139

Batch Processing
You can use the function form of print to pass variables containing file names.
For example, this for loop creates a series of graphs and prints each one with a
different file name.

for k=1:length(fnames)
surf(Z(:,:,k))
print('-dtiff','-r200',fnames(k))

end

Tiff Preview
The command:

print -depsc -tiff -r300 picture1

saves the current figure at 300 dpi, in a color Encapsulated PostScript file
named picture1.eps. The -tiff option creates a 72 dpi TIFF preview, which
many word processor applications can display on screen after you import the
EPS file. This enables you to view the picture on screen within your word
processor and print the document to a PostScript printer using a resolution of
300 dpi.

See Also orient, figure

printdlg

2-140

2printdlgPurpose Display print dialog box

Syntax printdlg
printdlg(fig)
printdlg('-crossplatform’,fig)
printdlg('-setup’,fig)

Description printdlg prints the current figure.

printdlg(fig) creates a dialog box from which you can print the figure
window identified by the handle fig. Note that uimenus do not print.

printdlg('-crossplatform’,fig) displays the standard cross-platform
MATLAB printing dialog rather than the built-in printing dialog box for
Microsoft Windows computers. Insert this option before the fig argument.

printdlg('-setup',fig) forces the printing dialog to appear in a setup mode.
Here one can set the default printing options without actually printing.

printpreview

2-141

2printpreviewPurpose Preview figure to be printed

Syntax printpreview
printpreview(f)

Description printpreview displays a dialog box showing the figure in the currently active
figure window as it will be printed. The figure is displayed with a 1/4 size
thumbnail or full size image.

printpreview(f) displays a dialog box showing the figure having the handle f
as it will be printed.

You can select any of the following options from the Print Preview dialog box.

See Also printdlg, pagesetupdlg

Option Button Description

Print... Close Print Preview and open the Print dialog

Page Setup... Open the Page Setup dialog

Zoom In Display a full size image of the page

Zoom Out Display a 1/4 scaled image of the page

Close Close the Print Preview dialog

prod

2-142

2prodPurpose Product of array elements

Syntax B = prod(A)
B = prod(A,dim)

Description B = prod(A) returns the products along different dimensions of an array.

If A is a vector, prod(A) returns the product of the elements.

If A is a matrix, prod(A) treats the columns of A as vectors, returning a row
vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.

B = prod(A,dim) takes the products along the dimension of A specified by
scalar dim.

Examples The magic square of order 3 is

M = magic(3)

M =
8 1 6
3 5 7
4 9 2

The product of the elements in each column is

prod(M) =

96 45 84

The product of the elements in each row can be obtained by:

prod(M,2) =

48
105
72

See Also cumprod, diff, sum

profile

2-143

2profilePurpose Tool for optimizing and debugging M-file code

Syntax profile on
profile on -detail level
profile on -history
profile off
profile resume
profile clear
profile report
profile report basename
profile plot
s = profile('status')
stats = profile('info')

Description The profiler utility helps you debug and optimize M-files by tracking their
execution time. For each function in the M-file, the profiler records information
about execution time, number of calls, parent functions, child functions, code
line hit count, and code line execution time. Some people use profile simply
to see the child functions; see also depfun for that purpose.

profile on starts the profiler, clearing previously recorded profile statistics.

profile on -detail level starts the profiler for the set of functions specified
by level, clearing previously recorded profile statistics.

profile on -history starts the profiler, clearing previously recorded profile
statistics, and recording the exact sequence of function calls. The profiler

Value for level Functions Profiler Gathers Information
About

mmex M-functions, M-subfunctions, and
MEX-functions; mmex is the default value

builtin Same functions as for mmex plus built-in
functions such as eig

operator Same functions as for builtin plus built-in
operators such as +

profile

2-144

records up to 10,000 function entry and exit events. For more than 10,000
events, the profiler continues to record other profile statistics, but not the
sequence of calls.

profile off suspends the profiler.

profile resume restarts the profiler without clearing previously recorded
statistics.

profile clear clears the statistics recorded by the profiler.

profile report suspends the profiler, generates a profile report in HTML
format, and displays the report in your system’s default Web browser.

profile report basename suspends the profiler, generates a profile report in
HTML format, saves the report in the file basename in the current directory,
and displays the report in your system’s default Web browser. Because the
report consists of several files, do not provide an extension for basename.

profile plot suspends the profiler and displays in a figure window a bar
graph of the functions using the most execution time.

s = profile('status') displays a structure containing the current profiler
status. The structure’s fields are shown below.

Field Values

ProfilerStatus 'on' or 'off'

DetailLevel 'mmex', 'builtin', or 'operator'

HistoryTracking 'on' or 'off'

profile

2-145

stats = profile('info') suspends the profiler and displays a structure
containing profiler results. Use this function to access the data generated by
the profiler. The structure’s fields are

Remarks To see an example of a profile report and profile plot, as well as to learn more
about the results and how to use profiling, see “Improving M-File Performance:
the Profiler” in Using MATLAB.

Examples Follow these steps to run the profiler and create a profile report.

1 Run the profiler for code that computes the Lotka-Volterra predator-prey
population model.
profile on -detail builtin -history
[t,y] = ode23('lotka',[0 2],[20;20]);
profile report

The profile report appears in your system’s default Web browser, providing
information for all M-functions, M-subfunctions, MEX-functions, and
built-in functions. The report includes the function call history.

2 Generate the profile plot.
profile plot

The profile plot appears in a figure window.

3 Because the report and plot features suspend the profiler, resume its
operation without clearing the statistics already gathered.

profile resume

The profiler will continue gathering statistics when you execute the next
M-file.

See Also depdir, depfun, profreport, tic

“Improving M-File Performance – the Profiler” in Using MATLAB

FunctionTable Array containing list of all functions called

FunctionHistory Array containing function call history

ClockPrecision Precision of profiler’s time measurement

profreport

2-146

2profreportPurpose Generate profile report

Syntax profreport
profreport(basename)
profreport(stats)
profreport(basename,stats)

Description profreport suspends the profiler, generates a profile report in HTML format
using the current profiler results, and displays the report in a Web browser.

profreport(basename) suspends the profiler, generates a profile report in
HTML format using the current profiler results, saves the report using the
basename you supply, and displays the report in a Web browser. Because the
report consists of several files, do not provide an extension for basename.

profreport(stats) suspends the profiler, generates a profile report in HTML
format using the profiler results info, and displays the report in a Web
browser. stats is the profiler information structure returned by stats =
profile('info').

profreport(basename,stats) suspends the profiler, generates a profile report
in HTML format using the profiler results stats, saves the report using the
basename you supply, and displays the report in a Web browser. stats is the
profiler information structure returned by stats = profile('info'). Because
the report consists of several files, do not provide an extension for basename.

Examples Run profiler and view the structure containing profile results.

1 Run the profiler for code that computes the Lotka-Volterra predator-prey
population model.
profile on -detail builtin -history
[t,y] = ode23('lotka',[0 2],[20;20]);

profreport

2-147

2 View the structure containing the profile results.
stats = profile('info')

MATLAB returns
stats =
FunctionTable: [42x1 struct]
 FunctionHistory: [2x830 double]
 ClockPrecision: 0.0100
 Name: 'MATLAB'

3 View the contents of the second element in the FunctionTable structure.
stats.FunctionTable(2)

MATLAB returns
ans =
 FunctionName: 'horzcat'
 FileName: ''
 Type: 'Builtin-function'
 NumCalls: 43
 TotalTime: 0
 TotalRecursiveTime: 0
 Children: [0x1 struct]
 Parents: [2x1 struct]
 ExecutedLines: [0x3 double]

4 Display the profile report from the structure.

profreport(stats)

MATLAB displays the profile report in a Web browser.

See Also profile

“Improving M-File Performance: the Profiler” in Using MATLAB

propedit

2-148

2propeditPurpose Starts the Property Editor

Syntax propedit
propedit(HandleList)

Description propedit starts the Property Editor, a graphical user interface to the
properties of Handle Graphics objects. If you call it without any input
arguments, the Property Editor displays the properties of the current figure, if
there are more than one figure displayed, or the root object, if there is no
currently active figure.

propedit(HandleList) edits the properties for the object (or objects) in
HandleList.

Note Starting the Property Editor enables plot editing mode for the figure.

propedit (activex)

2-149

2propedit (activex)Purpose Request the control to display its built-in property page.

Syntax propedit (a)

Arguments a
An interface handle previously returned from actxcontrol, get, or invoke.

Description Request the control to display its built-in property page. Note that some
controls do not have a built-in property page. For those objects, this command
will fail.

Example propedit (a)

pwd

2-150

2pwdPurpose Display current directory

Graphical
Interface

As an alternative to the pwd function, use the Current Directory field in the
MATLAB desktop toolbar.

Syntax pwd
s = pwd

Description pwd displays the current working directory.

s = pwd returns the current directory to the variable s.

See Also cd, dir, path, what

qmr

2-151

2qmrPurpose Quasi-Minimal Residual method

Syntax x = qmr(A,b)
qmr(A,b,tol)
qmr(A,b,tol,maxit)
qmr(A,b,tol,maxit,M)
qmr(A,b,tol,maxit,M1,M2)
qmr(A,b,tol,maxit,M1,M2,x0)
qmr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = qmr(A,b,...)
[x,flag,relres] = qmr(A,b,...)
[x,flag,relres,iter] = qmr(A,b,...)
[x,flag,relres,iter,resvec] = qmr(A,b,...)

Description x = qmr(A,b) attempts to solve the system of linear equations A*x=b for x.
The n-by-n coefficient matrix A must be square and the column vector b must
have length n. A can be a function afun such that afun(x) returns A*x and
afun(x,'transp') returns A'*x.

If qmr converges, a message to that effect is displayed. If qmr fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

qmr(A,b,tol) specifies the tolerance of the method. If tol is [], then qmr uses
the default, 1e-6.

qmr(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is
[], then qmr uses the default, min(n,20).

qmr(A,b,tol,maxit,M) and qmr(A,b,tol,maxit,M1,M2) use preconditioners
M or M = M1*M2 and effectively solve the system inv(M)*A*x = inv(M)*b for x.
If M is [] then qmr applies no preconditioner. M can be a function mfun such that
mfun(x) returns M\x and mfun(x,'transp') returns M'\x.

qmr(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then qmr
uses the default, an all zero vector.

qmr

2-152

qmr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,...,'transp') and similarly to the preconditioner functions
m1fun and m2fun.

[x,flag] = qmr(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = qmr(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = qmr(A,b,...) also returns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = qmr(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples Example 1.

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);

Flag Convergence

0 qmr converged to the desired tolerance tol within maxit
iterations.

1 qmr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during qmr became
too small or too large to continue computing.

qmr

2-153

tol = 1e-8; maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = qmr(A,b,tol,maxit,M1,M2,[]);

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)
if (nargin > 2) & strcmp(transp_flag,'transp')
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
else
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
end

as input to qmr

x1 = qmr(@afun,b,tol,maxit,M1,M2,[],n);

Example 2.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = qmr(A,b)

flag is 1 because qmr does not converge to the default tolerance 1e-6within the
default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = qmr(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and qmr
fails in the first iteration when it tries to solve a system such as U1*y = r for
y using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = qmr(A,b,1e-15,10,L2,U2)

flag2 is 0 because qmr converges to the tolerance of 1.6571e-016 (the value of
relres2) at the eighth iteration (the value of iter2) when preconditioned by

qmr

2-154

the incomplete LU factorization with a drop tolerance of 1e-6.
resvec2(1) = norm(b) and resvec2(9) = norm(b-A*x2). You can follow the
progress of qmr by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number’)
ylabel('relative residual')

See Also bicg, bicgstab, cgs, gmres, lsqr, luinc, minres, pcg, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Freund, Roland W. and Nöel M. Nachtigal, “QMR: A quasi-minimal residual
method for non-Hermitian linear systems”, SIAM Journal: Numer. Math. 60,
1991, pp. 315-339.

0 1 2 3 4 5 6 7 8
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration number

re
la

tiv
e

re
si

du
al

qr

2-155

2qrPurpose Orthogonal-triangular decomposition

Syntax [Q,R] = qr(A) (full and sparse matrices)
[Q,R] = qr(A,0) (full and sparse matrices)
[Q,R,E] = qr(A) (full matrices)
[Q,R,E] = qr(A,0) (full matrices)
X = qr(A) (full matrices)
R = qr(A) (sparse matrices)
[C,R] = qr(A,B) (sparse matrices)
R = qr(A,0) (sparse matrices)
[C,R] = qr(A,B,0) (sparse matrices)

Description The qr function performs the orthogonal-triangular decomposition of a matrix.
This factorization is useful for both square and rectangular matrices. It
expresses the matrix as the product of a real orthonormal or complex unitary
matrix and an upper triangular matrix.

[Q,R] = qr(A) produces an upper triangular matrix R of the same dimension
as A and a unitary matrix Q so that A = Q*R. For sparse matrices, Q is often
nearly full. If [m n] = size(A), then Q is m-by-m and R is m-by-n.

[Q,R] = qr(A,0) produces an “economy-size” decomposition. If
[m n] = size(A), and m > n, then qr computes only the first n columns of of Q
and R is n-by-n.

[Q,R,E] = qr(A) for full matrix A, produces a permutation matrix E, an upper
triangular matrix R with decreasing diagonal elements, and a unitary matrix
Q so that A*E = Q*R. The column permutation E is chosen so that abs(diag(R))
is decreasing.

[Q,R,E] = qr(A,0) for full matrix A, produces an “economy-size”
decomposition in which E is a permutation vector, so that Q*R = A(:,E). The
column permutation E is chosen so that abs(diag(R)) is decreasing.

X = qr(A) for full matrix A, returns the output of the LAPACK subroutine
DGEQRF or ZGEQRF. triu(qr(A)) is R.

qr

2-156

R = qr(A) for sparse matrix A, produces only an upper triangular matrix, R.
The matrix R provides a Cholesky factorization for the matrix associated with
the normal equations,

R'*R = A'*A

This approach avoids the loss of numerical information inherent in the
computation of A'*A.

[C,R] = qr(A,B) for sparse matrix A, applies the orthogonal transformations
to B, producing C = Q'*B without computing Q. B and A must have the same
number of rows.

R = qr(A,0) and [C,R] = qr(A,B,0) for sparse matrix A, produce
“economy-size” results.

For sparse matrices, the Q-less QR factorization allows the solution of sparse
least squares problems

with two steps

[C,R] = qr(A,b)
x = R\c

If A is sparse but not square, MATLAB uses the two steps above for the linear
equation solving backslash operator, i.e., x = A\b.

Examples Example 1. Start with

A = [1 2 3
4 5 6
7 8 9

10 11 12]

This is a rank-deficient matrix; the middle column is the average of the other
two columns. The rank deficiency is revealed by the factorization:

[Q,R] = qr(A)

Q =

-0.0776 -0.8331 0.5444 0.0605

minimize Ax b–

qr

2-157

-0.3105 -0.4512 -0.7709 0.3251
-0.5433 -0.0694 -0.0913 -0.8317
-0.7762 0.3124 0.3178 0.4461

R =

-12.8841 -14.5916 -16.2992
0 -1.0413 -2.0826
0 0 0.0000
0 0 0

The triangular structure of R gives it zeros below the diagonal; the zero on the
diagonal in R(3,3) implies that R, and consequently A, does not have full rank.

Example 2. This examples uses matrix A from the first example. The QR
factorization is used to solve linear systems with more equations than
unknowns. For example, let

b = [1;3;5;7]

The linear system represents four equations in only three unknowns.
The best solution in a least squares sense is computed by

x = A\b

which produces

Warning: Rank deficient, rank = 2, tol = 1.4594E-014
x =

0.5000
0

0.1667

The quantity tol is a tolerance used to decide if a diagonal element of R is
negligible. If [Q,R,E] = qr(A), then

tol = max(size(A))*eps*abs(R(1,1))

The solution x was computed using the factorization and the two steps

y = Q'*b;
x = R\y

Ax b=

qr

2-158

The computed solution can be checked by forming . This equals to within
roundoff error, which indicates that even though the simultaneous equations

are overdetermined and rank deficient, they happen to be consistent.
There are infinitely many solution vectors x; the QR factorization has found
just one of them.

Algorithm The qr function uses LAPACK routines to compute the QR decomposition:

See Also lu, null, orth, qrdelete, qrinsert, qrupdate

The arithmetic operators \ and /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide (http://www.netlib.org/lapack/lug/
lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

Ax b

Ax b=

Syntax Real Complex

R = qr(A)
R = qr(A,0)

DGEQRF ZGEQRF

[Q,R] = qr(A)
[Q,R] = qr(A,0)

DGEQRF, DORGQR ZGEQRF, ZUNGQR

[Q,R,e] = qr(A)
[Q,R,e] = qr(A,0)

DGEQPF, DORGQR ZGEQPF, ZUNGQR

qrdelete

2-159

2qrdeletePurpose Delete column from QR factorization

Syntax [Q,R] = qrdelete(Q,R,j)

Description [Q,R] = qrdelete(Q,R,j) changes Q and R to be the factorization of the
matrix A with its jth column, A(:,j), removed.

Inputs Q and R represent the original QR factorization of matrix A, as returned
by the statement [Q,R] = qr(A). Argument j specifies the column to be
removed from matrix A.

Algorithm The qrdelete function uses a series of Givens rotations to zero out the
appropriate elements of the factorization.

See Also qr, qrinsert

qrinsert

2-160

2qrinsertPurpose Insert column in QR factorization

Syntax [Q,R] = qrinsert(Q,R,j,x)

Description [Q,R] = qrinsert(Q,R,j,x) changes Q and R to be the factorization of the
matrix obtained by inserting an extra column, x, before A(:,j). If A has n
columns and j = n+1, then qrinsert inserts x after the last column of A.

Inputs Q and R represent the original QR factorization of matrix A, as returned
by the statement [Q,R] = qr(A). Argument x is the column vector to be
inserted into matrix A. Argument j specifies the column before which x is
inserted.

Algorithm The qrinsert function inserts the values of x into the jth column of R. It then
uses a series of Givens rotations to zero out the nonzero elements of R on and
below the diagonal in the jth column.

See Also qr, qrdelete

qrupdate

2-161

2qrupdateDescription Rank 1 update to QR factorization

Syntax [Q1,R1] = qrupdate(Q,R,u,v)

Description [Q1,R1] = qrupdate(Q,R,u,v) when [Q,R] = qr(A) is the original QR
factorization of A, returns the QR factorization of A + u*v', where u and v are
column vectors of appropriate lengths.

Remarks qrupdate works only for full matrices.

Examples The matrix

mu = sqrt(eps)

mu =

 1.4901e-08

A = [ones(1,4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of forming
A'*A. Instead, we work with the QR factorization – orthonormal Q and upper
triangular R.

 [Q,R] = qr(A);

As we expect, R is upper triangular.

R =

 -1.0000 -1.0000 -1.0000 -1.0000
 0 0.0000 0.0000 0.0000
 0 0 0.0000 0.0000
 0 0 0 0.0000
 0 0 0 0

In this case, the upper triangular entries of R, excluding the first row, are on
the order of sqrt(eps).

Consider the update vectors

 u = [-1 0 0 0 0]'; v = ones(4,1);

qrupdate

2-162

Instead of computing the rather trivial QR factorization of this rank one update
to A from scratch with

[QT,RT] = qr(A + u*v')

QT =

 0 0 0 0 1
 -1 0 0 0 0
 0 -1 0 0 0
 0 0 -1 0 0
 0 0 0 -1 0

RT =

 1.0e-007 *

 -0.1490 0 0 0
 0 -0.1490 0 0
 0 0 -0.1490 0
 0 0 0 -0.1490
 0 0 0 0

we may use qrupdate.

[Q1,R1] = qrupdate(Q,R,u,v)

Q1 =

 -0.0000 -0.0000 -0.0000 -0.0000 1.0000
 1.0000 -0.0000 -0.0000 -0.0000 0.0000
 0.0000 1.0000 -0.0000 -0.0000 0.0000
 0.0000 0.0000 1.0000 -0.0000 0.0000
 -0.0000 -0.0000 -0.0000 1.0000 0.0000

R1 =

 1.0e-007 *
 0.1490 0.0000 0.0000 0.0000
 0 0.1490 0.0000 0.0000
 0 0 0.1490 0.0000

qrupdate

2-163

 0 0 0 0.1490
 0 0 0 0

Note that both factorizations are correct, even though they are different.

Algorithm qrupdate uses the algorithm in section 12.5.1 of the third edition of Matrix
Computations by Golub and van Loan. qrupdate is useful since, if we take
N = max(m,n), then computing the new QR factorization from scratch is
roughly an algorithm, while simply updating the existing factors in this
way is an algorithm.

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

See Also cholupdate, qr

O N3()
O N2()

quad, quad8

2-164

2quad, quad8Purpose Numerically evaluate integral, adaptive Simpson quadrature

Note The quad8 function, which implemented a higher order method, is
obsolete. The quadl function is its recommended replacement.

Syntax q = quad(fun,a,b)
q = quad(fun,a,b,tol)
q = quad(fun,a,b,tol,trace)
q = quad(fun,a,b,tol,trace,p1,p2,...)
[q,fcnt] = quadl(fun,a,b,...)

Description Quadrature is a numerical method used to find the area under the graph of a
function, that is, to compute a definite integral.

q = quad(fun,a,b) approximates the integral of function fun from a to b to
within an error of 10-6 using recursive adaptive Simpson quadrature. fun
accepts a vector x and returns a vector y, the function fun evaluated at each
element of x.

q = quad(fun,a,b,tol) uses an absolute error tolerance tol instead of the
default which is 1.0e-6. Larger values of tol result in fewer function
evaluations and faster computation, but less accurate results. In MATLAB
version 5.3 and earlier, the quad function used a less reliable algorithm and a
default relative tolerance of 1.0e-3.

q = quad(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a Q] during the recursion.

q = quad(fun,a,b,tol,trace,p1,p2,...) provides for additional arguments
p1,p2,... to be passed directly to function fun, fun(x,p1,p2,...). Pass
empty matrices for tol or trace to use the default values.

[q,fcnt] = quad(...) returns the number of function evaluations.

q f x() xd
a

b

∫=

quad, quad8

2-165

The function quadl may be more efficient with high accuracies and smooth
integrands.

Examples You can specify fun three different ways:

• A string expression involving a single variable
Q = quad('1./(x.^3-2*x-5)',0,2);

• An inline object
F = inline('1./(x.^3-2*x-5)');
Q = quad(F,0,2);

• A function handle
Q = quad(@myfun,0,2);

where myfun.m is an M-file.
function y = myfun(x)
y = 1./(x.^3-2*x-5);

Algorithm quad implements a low order method using an adaptive recursive Simpson’s
rule.

Diagnostics quad may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of roundoff
error in the length of the original interval. A nonintegrable singularity is
possible.

'Maximum function count exceeded' indicates that the integrand has been
evaluated more than 10,000 times. A nonintegrable singularity is likely.

'Infinite or Not-a-Number function value encountered' indicates a
floating point overflow or division by zero during the evaluation of the
integrand in the interior of the interval.

See Also dblquad, inline, quadl, @ (function handle)

quad, quad8

2-166

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited”, BIT, Vol.
40, 2000, pp. 84-101. This document is also available at http://
www.inf.ethz.ch/personal/gander.

quadl

2-167

2quadlPurpose Numerically evaluate integral, adaptive Lobatto quadrature

Syntax q = quadl(fun,a,b)
q = quadl(fun,a,b,tol)
q = quadl(fun,a,b,tol,trace)
q = quadl(fun,a,b,tol,trace,p1,p2,...)
[q,fcnt] = quadl(fun,a,b,...)

Description q = quadl(fun,a,b) approximates the integral of function fun from a to b, to
within an error of 10-6 using recursive adaptive Lobatto quadrature. fun
accepts a vector x and returns a vector y, the function fun evaluated at each
element of x.

q = quadl(fun,a,b,tol) uses an absolute error tolerance of tol instead of the
default, which is 1.0e-6. Larger values of tol result in fewer function
evaluations and faster computation, but less accurate results.

quadl(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a q] during the recursion.

quadl(fun,a,b,tol,trace,p1,p2,...) provides for additional arguments
p1,p2,... to be passed directly to function fun, fun(x,p1,p2,...). Pass
empty matrices for tol or trace to use the default values.

[q,fcnt] = quadl(...) returns the number of function evaluations.

Use array operators .*, ./ and .^ in the definition of fun so that it can be
evaluated with a vector argument.

The function quad may be more efficient with low accuracies or nonsmooth
integrands.

Examples You can specify fun three different ways:

• A string expression involving a single variable
Q = quadl('1./(x.^3-2*x-5)',0,2);

• An inline object
F = inline('1./(x.^3-2*x-5)');
Q = quadl(F,0,2);

quadl

2-168

• A function handle
Q = quadl(@myfun,0,2);

where myfun.m is an M-file.
function y = myfun(x)
y = 1./(x.^3-2*x-5);

Algorithm quadl implements a high order method using an adaptive Gauss/Lobatto
qudrature rule.

Diagnostics quadl may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of roundoff
error in the length of the original interval. A nonintegrable singularity is
possible.

'Maximum function count exceeded' indicates that the integrand has been
evaluated more than 10,000 times. A nonintegrable singularity is likely.

'Infinite or Not-a-Number function value encountered' indicates a
floating point overflow or division by zero during the evaluation of the
integrand in the interior of the interval.

See Also dblquad, inline, quad, @ (function handle)

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited”, BIT,
Vol. 40, 2000, pp. 84-101. This document is also available at http://
www.inf.ethz.ch/personal/gander.

questdlg

2-169

2questdlgPurpose Create and display question dialog box

Syntax button = questdlg('qstring')
button = questdlg('qstring','title')
button = questdlg('qstring','title','default')
button = questdlg('qstring','title','str1','str2','default')
button =

questdlg('qstring','title','str1','str2','str3','default')

Description button = questdlg('qstring') displays a modal dialog presenting the
question 'qstring'. The dialog has three default buttons, Yes, No, and
Cancel. 'qstring' is a cell array or a string that automatically wraps to fit
within the dialog box. button contains the name of the button pressed.

button = questdlg('qstring','title') displays a question dialog with
'title' displayed in the dialog’s title bar.

button = questdlg('qstring','title','default') specifies which push
button is the default in the event that the Return key is pressed. 'default'
must be 'Yes', 'No', or 'Cancel'.

button = questdlg('qstring','title','str1','str2','default')
creates a question dialog box with two push buttons labeled 'str1' and
'str2'. 'default' specifies the default button selection and must be 'str1' or
'str2'.

button =
questdlg('qstring','title','str1','str2','str3','default') creates a
question dialog box with three push buttons labeled 'str1', 'str2', and
'str3'. 'default' specifies the default button selection and must be 'str1',
'str2', or 'str3'.

Example Create a question dialog asking the user whether to continue a hypothetical
operation:

button = questdlg('Do you want to continue?',...
'Continue Operation','Yes','No','Help','No');
if strcmp(button,'Yes')

disp('Creating file')

questdlg

2-170

elseif strcmp(button,'No')
disp('Canceled file operation')

elseif strcmp(button,'Help')
disp('Sorry, no help available')

end

See Also dialog, errordlg, helpdlg, inputdlg, msgbox, warndlg

quit

2-171

2quitPurpose Terminate MATLAB

Graphical
Interface

As an alternative to the quit function, use the close box or select Exit
MATLAB from the File menu in the MATLAB desktop.

Syntax quit
quit cancel
quit force

Description quit terminates MATLAB after running finish.m, if finish.m exists. The
workspace is not automatically saved by quit. To save the workspace or
perform other actions when quitting, create a finish.m file to perform those
actions. If an error occurs while finish.m is running, quit is canceled so that
you can correct your finish.m file without losing your workspace.

quit cancel is for use in finish.m and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this to override
finish.m, for example, if an errant finish.m will not let you quit.

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or drawnow so
that figures are visible. See the reference pages for these functions for more
information.

quit

2-172

Examples Two sample finish.m files are included with MATLAB. Use them to help you
create your own finish.m, or rename one of the files to finish.m to use it.

• finishsav.m – saves the workspace to a MAT-file when MATLAB quits

• finishdlg.m – displays a dialog allowing you to cancel quitting; it uses quit
cancel and contains the following code.

button = questdlg('Ready to quit?', ...
 'Exit Dialog','Yes','No','No');
switch button
 case 'Yes',
 disp('Exiting MATLAB');
 %Save variables to matlab.mat
 save
 case 'No',
 quit cancel;
end

See Also finish, save, startup

quiver

2-173

2quiverPurpose Quiver or velocity plot

Syntax quiver(U,V)
quiver(X,Y,U,V)
quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec,'filled')
h = quiver(...)

Description A quiver plot displays vectors with components (u,v) at the points (x,y).

quiver(U,V) draws vectors specified by U and V at the coordinates defined by
x = 1:n and y = 1:m, where [m,n] = size(U) = size(V). This syntax plots U
and V over a geometrically rectangular grid. quiver automatically scales the
vectors based on the distance between them to prevent them from overlapping.

quiver(X,Y,U,V) draws vectors at each pair of elements in X and Y. If X and Y
are vectors, length(X) = n and length(Y) = m, where
[m,n] = size(U) = size(V). The vector X corresponds to the columns of U and
V, and vector Y corresponds to the rows of U and V.

quiver(...,scale) automatically scales the vectors to prevent them from
overlapping, then multiplies them by scale. scale = 2 doubles their relative
length and scale = 0.5 halves them. Use scale = 0 to plot the velocity vectors
without the automatic scaling.

quiver(...,LineSpec) specifies line style, marker symbol, and color using
any valid LineSpec. quiver draws the markers at the origin of the vectors.

quiver(...,LineSpec,'filled') fills markers specified by LineSpec.

h = quiver(...) returns a vector of line handles.

Remarks If X and Y are vectors, this function behaves as

[X,Y] = meshgrid(x,y)
quiver(X,Y,U,V)

Examples Plot the gradient field of the function .z xe x2 y2––()=

quiver

2-174

[X,Y] = meshgrid(–2:.2:2);
Z = X.∗ exp(–X.^2 – Y.^2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)
hold on
quiver(X,Y,DX,DY)
colormap hsv
grid off
hold off

See Also contour, LineSpec, plot, quiver3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

quiver3

2-175

2quiver3Purpose Three-dimensional velocity plot

Syntax quiver3(Z,U,V,W)
quiver3(X,Y,Z,U,V,W)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec,'filled')
h = quiver3(...)

Description A three-dimensional quiver plot displays vectors with components (u,v,w) at
the points (x,y,z).

quiver3(Z,U,V,W) plots the vectors at the equally spaced surface points
specified by matrix Z. quiver3 automatically scales the vectors based on the
distance between them to prevent them from overlapping.

quiver3(X,Y,Z,U,V,W) plots vectors with components (u,v,w) at the points
(x,y,z). The matrices X, Y, Z, U, V, W must all be the same size and contain the
corresponding position and vector components.

quiver3(...,scale) automatically scales the vectors to prevent them from
overlapping, then multiplies them by scale. scale = 2 doubles their relative
length and scale = 0.5 halves them. Use scale = 0 to plot the vectors without
the automatic scaling.

quiver3(...,LineSpec) specify line type and color using any valid LineSpec.

quiver3(...,LineSpec,'filled') fills markers specified by LineSpec.

h = quiver3(...) returns a vector of line handles.

Examples Plot the surface normals of the function .

[X,Y] = meshgrid(–2:0.25:2,–1:0.2:1);
Z = X.* exp(–X.^2 – Y.^2);
[U,V,W] = surfnorm(X,Y,Z);
quiver3(X,Y,Z,U,V,W,0.5);
hold on
surf(X,Y,Z);
colormap hsv

z xe x2 y2––()=

quiver3

2-176

view(-35,45)
axis ([-2 2 -1 1 -.6 .6])
hold off

See Also axis, contour, LineSpec, plot, plot3, quiver, surfnorm, view

−2

−1

0

1

2

−1

−0.5

0

0.5

1

−0.4

−0.2

0

0.2

0.4

0.6

qz

2-177

2qzPurpose QZ factorization for generalized eigenvalues

Syntax [AA,BB,Q,Z,] = qz(A,B)
[AA,BB,Q,Z,V,W] = qz(A,B)
qz(A,B,flag)

Description The qz function gives access to intermediate results in the computation of
generalized eigenvalues.

[AA,BB,Q,Z] = qz(A,B) for square matrices A and B, produces upper
quasitriangular matrices AA and BB, and unitary matrices Q and Z such that
Q*A*Z = AA, and Q*B*Z = BB. For complex matrices, AA and BB are triangular.

[AA,BB,Q,Z,V,W] = qz(A,B) also produces matrices V and W whose columns
are generalized eigenvectors.

qz(A,B,flag) for real matrices A and B, produces one of two decompositions
depending on the value of flag:

If AA is triangular, the diagonal elements of AA and BB,

alpha = diag(AA)
beta = diag(BB)

are the generalized eigenvalues that satisfy

A*V*diag(beta) = B*V*diag(alpha)
diag(beta)*W'*A = diag(alpha)*W'*B

The eigenvalues produced by

lambda = eig(A,B)

'complex' Produces a possibly complex decomposition with a triangular
AA. For compatibility with earlier versions, 'complex' is the
default.

'real' Produces a real decomposition with a quasitriangular AA,
containing 1-by-1 and 2-by-2 blocks on its diagonal.

qz

2-178

are the element-wise ratios of alpha and beta.

lambda = alpha ./ beta

If AA is not triangular, it is necessary to further reduce the 2-by-2 blocks to
obtain the eigenvalues of the full system.

Algorithm For real QZ on real A and real B, eig uses the LAPACK DGGES routine. If you
request the fifth output V, eig also uses DTGEVC.

For complex QZ on real or complex A and B, eig uses the LAPACK ZGGES
routine. If you request the fifth output V, eig also uses ZTGEVC.

See Also eig

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide (http://www.netlib.org/lapack/lug/
lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

rand

2-179

2randPurpose Uniformly distributed random numbers and arrays

Syntax Y = rand(n)
Y = rand(m,n)
Y = rand([m n])
Y = rand(m,n,p,...)
Y = rand([m n p...])
Y = rand(size(A))
rand
s = rand('state')

Description The rand function generates arrays of random numbers whose elements are
uniformly distributed in the interval (0,1).

Y = rand(n) returns an n-by-n matrix of random entries. An error message
appears if n is not a scalar.

Y = rand(m,n) or Y = rand([m n]) returns an m-by-n matrix of random
entries.

Y = rand(m,n,p,...) or Y = rand([m n p...]) generates random arrays.

Y = rand(size(A)) returns an array of random entries that is the same size
as A.

rand, by itself, returns a scalar whose value changes each time it’s referenced.

s = rand('state') returns a 35-element vector containing the current state
of the uniform generator. To change the state of the generator:

rand('state',s) Resets the state to s.

rand('state',0) Resets the generator to its initial state.

rand('state',j) For integer j, resets the generator to its
j-th state.

rand('state',sum(100*clock)) Resets it to a different state each time.

rand

2-180

Examples Example 1. R = rand(3,4) may produce

 R =
 0.2190 0.6793 0.5194 0.0535
 0.0470 0.9347 0.8310 0.5297
 0.6789 0.3835 0.0346 0.6711

This code makes a random choice between two equally probable alternatives.

 if rand < .5
 'heads'
 else
 'tails'
 end

Example 2. Generate a uniform distribution of random numbers on a specified
interval [a,b]. To do this, multiply the output of rand by (b-a) then add a. For
example, to generate a 5-by-5 array of uniformly distributed random numbers
on the interval [10,50]

a = 10; b = 50;
x = a + (b-a) * rand(5)
x =

 18.1106 10.6110 26.7460 43.5247 30.1125
 17.9489 39.8714 43.8489 10.7856 38.3789
 34.1517 27.8039 31.0061 37.2511 27.1557
 20.8875 47.2726 18.1059 25.1792 22.1847
 17.9526 28.6398 36.8855 43.2718 17.5861

 See Also randn, randperm, sprand, sprandn

randn

2-181

2randnPurpose Normally distributed random numbers and arrays

Syntax Y = randn(n)
Y = randn(m,n)
Y = randn([m n])
Y = randn(m,n,p,...)
Y = randn([m n p...])
Y = randn(size(A))
randn
s = randn('state')

Description The randn function generates arrays of random numbers whose elements are
normally distributed with mean 0, variance , and standard deviation

.

Y = randn(n) returns an n-by-n matrix of random entries. An error message
appears if n is not a scalar.

Y = randn(m,n) or Y = randn([m n]) returns an m-by-n matrix of random
entries.

Y = randn(m,n,p,...) or Y = randn([m n p...]) generates random arrays.

Y = randn(size(A)) returns an array of random entries that is the same size
as A.

randn, by itself, returns a scalar whose value changes each time it’s referenced.

s = randn('state') returns a 2-element vector containing the current state
of the normal generator. To change the state of the generator:

randn('state',s) Resets the state to s.

randn('state',0) Resets the generator to its initial state.

randn('state',j) For integer j, resets the generator to its
jth state.

randn('state',sum(100*clock)) Resets it to a different state each time.

σ2 1=
σ 1=

randn

2-182

Examples Example 1. R = randn(3,4) may produce

 R =
 1.1650 0.3516 0.0591 0.8717
 0.6268 -0.6965 1.7971 -1.4462
 0.0751 1.6961 0.2641 -0.7012

For a histogram of the randn distribution, see hist.

Example 2. Generate a random distribution with a specific mean and variance
. To do this, multiply the output of randn by the standard deviation , and

then add the desired mean. For example, to generate a 5-by-5 array of random
numbers with a mean of .6 that are distributed with a variance of 0.1

x = .6 + sqrt(0.1) * randn(5)
x =

 0.8713 0.4735 0.8114 0.0927 0.7672
 0.9966 0.8182 0.9766 0.6814 0.6694
 0.0960 0.8579 0.2197 0.2659 0.3085
 0.1443 0.8251 0.5937 1.0475 -0.0864
 0.7806 1.0080 0.5504 0.3454 0.5813

See Also rand, randperm, sprand, sprandn

σ2 σ

randperm

2-183

2randpermPurpose Random permutation

Syntax p = randperm(n)

Description p = randperm(n) returns a random permutation of the integers 1:n.

Remarks The randperm function calls rand and therefore changes rand’s state.

Examples randperm(6) might be the vector

[3 2 6 4 1 5]

or it might be some other permutation of 1:6.

See Also permute

rank

2-184

2rankPurpose Rank of a matrix

Syntax k = rank(A)
k = rank(A,tol)

Description The rank function provides an estimate of the number of linearly independent
rows or columns of a full matrix.

k = rank(A) returns the number of singular values of A that are larger than
the default tolerance, max(size(A))*norm(A)*eps.

k = rank(A,tol) returns the number of singular values of A that are larger
than tol.

Remark Use sprank to determine the structural rank of a sparse matrix.

Algorithm There are a number of ways to compute the rank of a matrix. MATLAB uses
the method based on the singular value decomposition, or SVD. The SVD
algorithm is the most time consuming, but also the most reliable.

The rank algorithm is

s = svd(A);
tol = max(size(A))*s(1)*eps;
r = sum(s > tol);

See Also sprank

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide (http://www.netlib.org/lapack/lug/
lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

rat, rats

2-185

2rat, ratsPurpose Rational fraction approximation

Syntax [N,D] = rat(X)
[N,D] = rat(X,tol)
rat(...)
S = rats(X,strlen)
S = rats(X)

Description Even though all floating-point numbers are rational numbers, it is sometimes
desirable to approximate them by simple rational numbers, which are fractions
whose numerator and denominator are small integers. The rat function
attempts to do this. Rational approximations are generated by truncating
continued fraction expansions. The rats function calls rat, and returns
strings.

[N,D] = rat(X) returns arrays N and D so that N./D approximates X to within
the default tolerance, 1.e-6*norm(X(:),1).

[N,D] = rat(X,tol) returns N./D approximating X to within tol.

rat(X), with no output arguments, simply displays the continued fraction.

S = rats(X,strlen) returns a string containing simple rational
approximations to the elements of X. Asterisks are used for elements that
cannot be printed in the allotted space, but are not negligible compared to the
other elements in X. strlen is the length of each string element returned by the
rats function. The default is strlen = 13, which allows 6 elements in 78
spaces.

S = rats(X) returns the same results as those printed by MATLAB with
format rat.

Examples Ordinarily, the statement

 s = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7

produces

 s =
 0.7595

rat, rats

2-186

However, with

 format rat

or with

 rats(s)

the printed result is

 s =
 319/420

This is a simple rational number. Its denominator is 420, the least common
multiple of the denominators of the terms involved in the original expression.
Even though the quantity s is stored internally as a binary floating-point
number, the desired rational form can be reconstructed.

To see how the rational approximation is generated, the statement rat(s)

produces

 1 + 1/(-4 + 1/(-6 + 1/(-3 + 1/(-5))))

And the statement

 [n,d] = rat(s)

produces

n = 319, d = 420

The mathematical quantity is certainly not a rational number, but the
MATLAB quantity pi that approximates it is a rational number. pi is the ratio
of a large integer and 252:

 14148475504056880/4503599627370496

However, this is not a simple rational number. The value printed for pi with
format rat, or with rats(pi), is

 355/113

This approximation was known in Euclid’s time. Its decimal representation is

 3.14159292035398

π

rat, rats

2-187

and so it agrees with pi to seven significant figures. The statement

 rat(pi)

produces

 3 + 1/(7 + 1/(16))

This shows how the 355/113was obtained. The less accurate, but more familiar
approximation 22/7 is obtained from the first two terms of this continued
fraction.

Algorithm The rat(X) function approximates each element of X by a continued fraction of
the form

The s are obtained by repeatedly picking off the integer part and then taking
the reciprocal of the fractional part. The accuracy of the approximation
increases exponentially with the number of terms and is worst when
X = sqrt(2). For x = sqrt(2), the error with k terms is about 2.68*(.173)^k,
so each additional term increases the accuracy by less than one decimal digit.
It takes 21 terms to get full floating-point accuracy.

See Also format

n
d
--- d1

1

d2
1

d3 … 1
dk
------+ + 

 
-------------------------------------+

--+=

d

rbbox

2-188

2rbboxPurpose Create rubberband box for area selection

Synopsis rbbox
rbbox(initialRect)
rbbox(initialRect,fixedPoint)
rbbox(initialRect,fixedPoint,stepSize)
finalRect = rbbox(...)

Description rbbox initializes and tracks a rubberband box in the current figure. It sets the
initial rectangular size of the box to 0, anchors the box at the figure’s
CurrentPoint, and begins tracking from this point.

rbbox(initialRect) specifies the initial location and size of the rubberband
box as [x y width height], where x and y define the lower-left corner, and
width and height define the size. initialRect is in the units specified by the
current figure’s Units property, and measured from the lower-left corner of the
figure window. The corner of the box closest to the pointer position follows the
pointer until rbbox receives a button-up event.

rbbox(initialRect,fixedPoint) specifies the corner of the box that remains
fixed. All arguments are in the units specified by the current figure’s Units
property, and measured from the lower-left corner of the figure window.
fixedPoint is a two-element vector, [x y]. The tracking point is the corner
diametrically opposite the anchored corner defined by fixedPoint.

rbbox(initialRect,fixedPoint,stepSize) specifies how frequently the
rubberband box is updated. When the tracking point exceeds stepSize figure
units, rbbox redraws the rubberband box. The default stepsize is 1.

finalRect = rbbox(...) returns a four-element vector, [x y width height],
where x and y are the x and y components of the lower-left corner of the box,
and width and height are the dimensions of the box.

Remarks rbbox is useful for defining and resizing a rectangular region:

• For box definition, initialRect is [x y 0 0], where (x,y) is the figure’s
CurrentPoint.

rbbox

2-189

• For box resizing, initialRect defines the rectangular region that you resize
(e.g., a legend). fixedPoint is the corner diametrically opposite the tracking
point.

rbbox returns immediately if a button is not currently pressed. Therefore, you
use rbbox with waitforbuttonpress so that the mouse button is down when
rbbox is called. rbbox returns when you release the mouse button.

Examples Assuming the current view is view(2), use the current axes’ CurrentPoint
property to determine the extent of the rectangle in dataspace units:

k = waitforbuttonpress;

point1 = get(gca,'CurrentPoint'); % button down detected
finalRect = rbbox; % return figure units
point2 = get(gca,'CurrentPoint'); % button up detected

point1 = point1(1,1:2); % extract x and y
point2 = point2(1,1:2);

p1 = min(point1,point2); % calculate locations
offset = abs(point1-point2); % and dimensions

x = [p1(1) p1(1)+offset(1) p1(1)+offset(1) p1(1) p1(1)];
y = [p1(2) p1(2) p1(2)+offset(2) p1(2)+offset(2) p1(2)];

hold on
axis manual
plot(x,y) % redraw in dataspace units

See Also axis, dragrect, waitforbuttonpress

rcond

2-190

2rcondPurpose Matrix reciprocal condition number estimate

Syntax c = rcond(A)

Description c = rcond(A) returns an estimate for the reciprocal of the condition of A in
1-norm using the LAPACK condition estimator. If A is well conditioned,
rcond(A) is near 1.0. If A is badly conditioned, rcond(A) is near 0.0. Compared
to cond, rcond is a more efficient, but less reliable, method of estimating the
condition of a matrix.

Algorithm rcond uses LAPACK routines to compute the estimate of the reciprocal
condition number:

See Also cond, condest, norm, normest, rank, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide (http://www.netlib.org/lapack/lug/
lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

Matrix Routine

Real DLANGE, DGETRF, DGECON

Complex ZLANGE, ZGETRF, ZGECON

readasync

2-191

2readasyncPurpose Read data asynchronously from the device

Syntax readasync(obj)
readasync(obj,size)

Arguments

Description readasync(obj) initiates an asynchronous read operation.

readasync(obj,size) asynchronously reads, at most, the number of bytes
given by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property value, an
error is returned.

Remarks Before you can read data, you must connect obj to the device with the fopen
function. A connected serial port object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not
connected to the device.

You should use readasync only when you configure the ReadAsyncMode
property to manual. readasync is ignored if used when ReadAsyncMode is
continuous.

The TransferStatus property indicates if an asynchronous read or write
operation is in progress. You can write data while an asynchronous read is in
progress since serial ports have separate read and write pins. You can stop
asynchronous read and write operations with the stopasync function.

You can monitor the amount of data stored in the input buffer with the
BytesAvailable property. Additionally, you can use the BytesAvailableFcn
property to execute an M-file callback function when the terminator or the
specified amount of data is read.

Rules for Completing an Asynchronous Read Operation
An asynchronous read operation with readasync completes when one of these
conditions is met:

• The terminator specified by the Terminator property is read.

obj A serial port object.

size The number of bytes to read from the device.

readasync

2-192

• The time specified by the Timeout property passes.

• The specified number of bytes is read.

• The input buffer is filled (if size is not specified).

Since readasync checks for the terminator, this function can be slow. To
increase speed, you may want to configure ReadAsyncMode to continuous and
continuously return data to the input buffer as soon as it is available from the
device.

Example This example creates the serial port object s, connects s to a Tektronix TDS 210
oscilloscope, configures s to read data asynchronously only if readasync is
issued, and configures the instrument to return the peak-to-peak value of the
signal on channel 1.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')
fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

Begin reading data asynchronously from the instrument using readasync.
When the read operation is complete, return the data to the MATLAB
workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =
 15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

See Also Functions
fopen, stopasync

Properties
BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

real

2-193

2realPurpose Real part of complex number

Syntax X = real(Z)

Description X = real(Z) returns the real part of the elements of the complex array Z.

Examples real(2+3*i) is 2.

See Also abs, angle, conj, i, j, imag

realmax

2-194

2realmaxPurpose Largest positive floating-point number

Syntax n = realmax

Description n = realmax returns the largest floating-point number representable on a
particular computer. Anything larger overflows.

Examples realmax is one bit less than 21024 or about 1.7977e+308.

Algorithm The realmax function is equivalent to pow2(2-eps,maxexp), where maxexp is
the largest possible floating-point exponent.

Execute type realmax to see maxexp for various computers.

See Also eps, realmin

realmin

2-195

2realminPurpose Smallest positive floating-point number

Syntax n = realmin

Description n = realmin returns the smallest positive normalized floating-point number
on a particular computer. Anything smaller underflows or is an IEEE
“denormal.”

Examples On machines with IEEE floating-point format, realmin is 2^(-1022) or about
2.2251e-308.

Algorithm The realmin function is equivalent to pow2(1,minexp) where minexp is the
smallest possible floating-point exponent.

Execute type realmin to see minexp for various computers.

See Also eps, realmax

record

2-196

2recordPurpose Record data and event information to a file

Syntax record(obj)
record(obj,'switch')

Arguments

Description record(obj) toggles the recording state for obj.

record(obj,'switch') initiates or terminates recording for obj. switch can
be on or off. If switch is on, recording is initiated. If switch is off, recording
is terminated.

Remarks Before you can record information to disk, obj must be connected to the device
with the fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to record information while
obj is not connected to the device. Each serial port object must record
information to a separate file. Recording is automatically terminated when obj
is disconnected from the device with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
“Debugging: Recording Information to Disk.”

Example This example creates the serial port object s, connects s to the device,
configures s to record information to a file, writes and reads text data, and then
disconnects s from the device.

s = serial('COM1');
fopen(s)
s.RecordDetail = 'verbose';
s.RecordName = 'MySerialFile.txt';
record(s,'on')
fprintf(s,'*IDN?')
out = fscanf(s);

obj A serial port object.

'switch' Switch recording capabilities on or off.

record

2-197

record(s,'off')
fclose(s)

See Also Functions
fclose, fopen

Properties
RecordDetail, RecordMode, RecordName, RecordStatus, Status

rectangle

2-198

2rectanglePurpose Create a 2-D rectangle object

Syntax rectangle
rectangle('Position',[x,y,w,h])
rectangle(...,'Curvature',[x,y])
h = rectangle(...)

Description rectangle draws a rectangle with Position [0,0,1,1] and Curvature [0,0]
(i.e., no curvature).

rectangle('Position',[x,y,w,h]) draws the rectangle from the point x,y
and having a width of w and a height of h. Specify values in axes data units.

Note that, to display a rectangle in the specified proportions, you need to set
the axes data aspect ratio so that one unit is of equal length along both the x
and y axes. You can do this with the command axis equal or
daspect([1,1,1]).

rectangle(...,'Curvature',[x,y]) specifies the curvature of the rectangle
sides, enabling it to vary from a rectangle to an ellipse. The horizontal
curvature x is the fraction of width of the rectangle that is curved along the top
and bottom edges. The vertical curvature y is the fraction of the height of the
rectangle that is curved along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides. A value of
[1,1] creates an ellipse. If you specify only one value for Curvature, then the
same length (in axes data units) is curved along both horizontal and vertical
sides. The amount of curvature is determined by the shorter dimension.

h = rectangle(...) returns the handle of the rectangle object created.

Remarks Rectangle objects are 2-D and can be drawn in an axes only if the view is [0
90] (i.e., view(2)). Rectangles are children of axes and are defined in
coordinates of the axes data.

Examples This example sets the data aspect ratio to [1,1,1] so that the rectangle
displays in the specified proportions (daspect). Note that the horizontal and
vertical curvature can be different. Also, note the effects of using a single value
for Curvature.

rectangle

2-199

rectangle('Position',[0.59,0.35,3.75,1.37],...
'Curvature',[0.8,0.4],...

'LineWidth',2,'LineStyle','--')
daspect([1,1,1])

Specifying a single value of [0.4] for Curvature produces:

A Curvature of [1] produces a rectangle with the shortest side completely
round:

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

rectangle

2-200

This example creates an ellipse and colors the face red.

rectangle('Position',[1,2,5,10],'Curvature',[1,1],...
'FaceColor’,'r')

daspect([1,1,1])
xlim([0,7])
ylim([1,13])

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

rectangle

2-201

See Also line, patch, plot, plot3, set, text, rectangle properties

Object
Hierarchy

0 1 2 3 4 5 6 7

2

4

6

8

10

12

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

rectangle

2-202

Setting Default Properties
You can set default rectangle properties on the axes, figure, and root levels.

set(0,'DefaultRectangleProperty',PropertyValue...)
set(gcf,'DefaultRectangleProperty',PropertyValue...)
set(gca,'DefaultRectangleProperty',PropertyValue...)

Where Property is the name of the rectangle property whose default value you
want to set and PropertyValue is the value you are specifying. Use set and get
to access the surface properties.

Property List The following table lists all rectangle properties and provides a brief
description of each. The property name links take you to an expanded
description of the properties.

Property Name Property Description Property Value

Defining the Rectangle Object

Curvature Degree of horizontal and vertical
curvature

Value: two-element vector
with values between 0 and 1
Default: [0,0]

EraseMode Method of drawing and erasing the
rectangle (useful for animation)

Values: normal, none, xor,
background
Default: normal

EdgeColor Color of rectangle edges Value: ColorSpec or none
Default: ColorSpec [0,0,0]

FaceColor Color of rectangle interior Value: ColorSpec or none
Default: none

LineStyle Line style of edges Values: −, −−, :, −., none
Default: −

LineWidth Width of edge lines in points Value: scalar
Default: 0.5 points

Position Location and width and height of
rectangle

Value: [x,y,width,height]
Default: [0,0,1,1]

rectangle

2-203

General Information About Rectangle Objects

Children Rectangle objects have no children

Parent Axes object Value: handle of axes

Selected Indicate if the rectangle is in a
“selected” state.

Value: on, off
Default: off

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string
'rectangle'

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Value: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a mouse button is
pressed on over the rectangle

Value: string
Default: '' (empty string)

CreateFcn Define a callback routine that
executes when a rectangle is created

Value: string
Default: '' (empty string)

DeleteFcn Define a callback routine that
executes when the rectangle is
deleted (via close or delete)

Values: string
Default: '' (empty string)

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu Associate a context menu with the
rectangle

Values: handle of a
Uicontextmenu

Property Name Property Description Property Value

rectangle

2-204

Controlling Access to Objects

HandleVisibility Determines if and when the
rectangle’s handle is visible to other
functions

Values: on, callback, off
Default: on

HitTest Determines if the rectangle can
become the current object (see the
Figure CurrentObject property)

Values: on, off
Default: on

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

SelectionHighlight Highlight rectangle when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the rectangle visible or
invisible

Values: on, off
Default: on

Property Name Property Description Property Value

rectangle properties

2-205

2rectangle propertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Rectangle
Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the rectangle object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

Children vector of handles

The empty matrix; rectangle objects have no children.

rectangle properties

2-206

Clipping {on} | off

Clipping mode. MATLAB clips rectangles to the axes plot box by default. If you
set Clipping to off, rectangles display outside the axes plot box. This can occur
if you create a rectangle, set hold to on, freeze axis scaling (axis manual), and
then create a larger rectangle.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a rectangle object. You
must define this property as a default value for rectangles. For example, the
statement,

set(0,'DefaultRectangleCreateFcn',...

'set(gca,''DataAspectRatio'',[1,1,1])')

defines a default value on the root level that sets the axes DataAspectRatio
whenever you create a rectangle object. MATLAB executes this routine after
setting all rectangle properties. Setting this property on an existing rectangle
object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

Curvature one- or two-element vector [x,y]

Amount of horizontal and vertical curvature. This property specifies the
curvature of the property sides, which enables the shape of the rectangle to
vary from rectangular to ellipsoidal. The horizontal curvature x is the fraction
of width of the rectangle that is curved along the top and bottom edges. The
vertical curvature y is the fraction of the height of the rectangle that is curved
along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides. A value of
[1,1] creates an ellipse. If you specify only one value for Curvature, then the
same length (in axes data units) is curved along both horizontal and vertical
sides. The amount of curvature is determined by the shorter dimension.

DeleteFcn string

Delete rectangle callback routine. A callback routine that executes when you
delete the rectangle object (e.g., when you issue a delete command or clear the

rectangle properties

2-207

axes or figure). MATLAB executes the routine before deleting the object’s
properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

EdgeColor {ColorSpec} | none

Color of the rectangle edges. This property specifies the color of the rectangle
edges as a color or specifies that no edges be drawn.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase rectangle objects. Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects redraw is
necessary to improve performance and obtain the desired effect.

• normal (the default) – Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none – Do not erase the rectangle when it is moved or destroyed. While the
object is still visible on the screen after erasing with EraseMode none, you
cannot print it because MATLAB stores no information about its former
location.

• xor – Draw and erase the rectangle by performing an exclusive OR (XOR)
with the color of the screen beneath it. This mode does not damage the color
of the objects beneath the rectangle. However, the rectangle’s color depends
on the color of whatever is beneath it on the display.

• background – Erase the rectangle by drawing it in the Axes’ background
Color, or the Figure background Color if the Axes Color is set to none. This
damages objects that are behind the erased rectangle, but rectangles are
always properly colored.

Printing with Non-normal Erase Modes.

MATLAB always prints Figures as if the EraseMode of all objects is normal.
This means graphics objects created with EraseMode set to none, xor, or
background can look different on screen than on paper. On screen, MATLAB

rectangle properties

2-208

may mathematically combine layers of colors (e.g., XORing a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting to obtain
greater rendering speed. However, these techniques are not applied to the
printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a Figure containing non-normal mode objects.

FaceColor ColorSpec | {none}

Color of rectangle face. This property specifies the color of the rectangle face,
which is not colored by default.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaling a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s

rectangle properties

2-209

CallbackObject property or in the figure’s CurrentObject property, and Axes
do not appear in their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the rectangle can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the rectangle. If HitTest is off,
clicking on the rectangle selects the object below it (which may be the axes
containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a rectangle callback routine can be interrupted by subsequently
invoked callback routines. Only callback routines defined for the
ButtonDownFcn are affected by the Interruptible property. MATLAB checks
for events that can interrupt a callback routine only when it encounters a
drawnow, figure, getframe, or pause command in the routine.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style of the edges. The available line
styles are:

Symbol Line Style

− solid line (default)

−− dashed line

: dotted line

−. dash-dot line

none no line

rectangle properties

2-210

LineWidth scalar

The width of the rectangle object. Specify this value in points (1 point = 1/72
inch). The default LineWidth is 0.5 points.

Parent handle

rectangle’s parent. The handle of the rectangle object’s parent axes. You can
move a rectangle object to another axes by changing this property to the new
axes handle.

Position four-element vecotr [x,y,width,height]

Location and size of rectangle. This property specifies the location and size of
the rectangle in the data units of the axes. The point defined by x, y specifies
one corner of the rectangle, and width and height define the size in units along
the x and y axes respecitvely.

Selected on | off

Is object selected? When this property is onMATLAB displays selection handles
if the SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing handles at each vertex. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For rectangle objects, Type is always the string
'rectangle'.

rectangle properties

2-211

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the rectangle. Assign this property the handle of
a uicontextmenu object created in the same figure as the rectangle. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the rectangle.

UserData matrix

User-specified data. Any data you want to associate with the rectangle object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

rectangle visibility. By default, all rectangles are visible. When set to off, the
rectangle is not visible, but still exists and you can get and set its properties.

rectint

2-212

2rectintPurpose Rectangle intersection area.

Syntax area = rectint(A,B)

Description area = rectint(A,B) returns the area of intersection of the rectangles
specified by position vectors A and B.

If A and B each specify one rectangle, the output area is a scalar.

A and B can also be matrices, where each row is a position vector. area is then
a matrix giving the intersection of all rectangles specified by A with all the
rectangles specified by B. That is, if A is n-by-4 and B is m-by-4, then area is an
n-by-m matrix where area(i,j) is the intersection area of the rectangles
specified by the ith row of A and the jth row of B.

Note A position vector is a four-element vector [x,y,width,height], where
the point defined by x and y specifies one corner of the rectangle, and width
and height define the size in units along the x and y axes respectively.

See Also polyarea

reducepatch

2-213

2reducepatchPurpose Reduce the number of patch faces

Syntax reducepatch(p,r)
nfv = reducepatch(p,r)
nfv = reducepatch(fv,r)
reducepatch(...,'fast')
reducepatch(...,'verbose')
nfv = reducepatch(f,v,r)
[nf,nv] = reducepatch(...)

Description reducepatch(p,r) reduces the number of faces of the patch identified by
handle p, while attempting to preserve the overall shape of the original object.
MATLAB interprets the reduction factor r in one of two ways depending on its
value:

• If r is less than 1, r is interpreted as a fraction of the original number of
faces. For example, if you specify r as 0.2, then the number of faces is reduced
to 20% of the number in the original patch.

• If r is greater than or equal to 1, then r is the target number of faces. For
example, if you specify r as 400, then the number of faces is reduced until
there are 400 faces remaining.

nfv = reducepatch(p,r) returns the reduced set of faces and vertices but does
not set the Faces and Vertices properties of patch p. The struct nfv contains
the faces and vertices after reduction.

nfv = reducepatch(fv,r) performs the reduction on the faces and vertices in
the struct fv.

nfv = reducepatch(p) or nfv = reducepatch(fv) uses a reduction value of
0.5.

reducepatch(...,'fast') assumes the vertices are unique and does not
compute shared vertices.

reducepatch(...,'verbose') prints progress messages to the command
window as the computation progresses.

nfv = reducepatch(f,v,r) performs the reduction on the faces in f and the
vertices in v.

reducepatch

2-214

[nf,nv] = reducepatch(...) returns the faces and vertices in the arrays nf
and nv.

Remarks If the patch contains nonshared vertices, MATLAB computes shared vertices
before reducing the number of faces. If the faces of the patch are not triangles,
MATLAB triangulates the faces before reduction. The faces returned are
always defined as triangles.

The number of output triangles may not be exactly the number specified with
the reduction factor argument (r), particularly if the faces of the original patch
are not triangles.

Examples This example illustrates the effect of reducing the number of faces to only 15%
of the original value.

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
set(p,'facecolor','w','EdgeColor','b');
daspect([1,1,1])
view(3)
figure;
h = axes;
p2 = copyobj(p,h);
reducepatch(p2,0.15)
daspect([1,1,1])
view(3)

reducepatch

2-215

0
2

4
6

8
10

−4

−2

0

2

4
−3

−2

−1

0

1

2

3

Before Reduction

reducepatch

2-216

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducevolume

0

2

4

6

8

10

−4

−2

0

2

4
−3

−2

−1

0

1

2

3

After Reduction to 15% of Original Number of Faces

reducevolume

2-217

2reducevolumePurpose Reduce the number of elements in a volume data set

Syntax [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz])
[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz])
nv = reducevolume(...)

Description [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz]) reduces the number
of elements in the volume by retaining every Rxth element in the x direction,
every Ryth element in the y direction, and every Rzth element in the z direction.
If a scalar R is used to indicate the amount or reduction instead of a 3-element
vector, MATLAB assumes the reduction to be [R R R].

The arrays X, Y, and Z define the coordinates for the volume V. The reduced
volume is returned in nv and the coordinates of the reduced volume are
returned in nx, ny, and nz.

[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz]) assumes the arrays X, Y, and
Z are defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] =
size(V).

nv = reducevolume(...) returns only the reduced volume.

Examples This example uses a data set that is a collection of MRI slices of a human skull.
This data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and then reduced
(reducevolume) so that what remains is every 4th element in the x and y
directions and every element in the z direction.

• The reduced data is smoothed (smooth3).

• The outline of the skull is an isosurface generated as a patch (p1) whose
vertex normals are recalculated to improve the appearance when lighting is
applied (patch, isosurface, isonormals).

• A second patch (p2) with an interpolated face color draws the end caps
(FaceColor, isocaps).

• The view of the object is set (view, axis, daspect).

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

reducevolume

2-218

• Adding a light to the right of the camera illuminates the object (camlight,
lighting).

load mri
D = squeeze(D);
[x,y,z,D] = reducevolume(D,[4,4,1]);
D = smooth3(D);
p1 = patch(isosurface(x,y,z,D, 5,'verbose'),...
 'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);

p2 = patch(isocaps(x,y,z,D, 5),...
'FaceColor','interp','EdgeColor','none');

view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight; lighting gouraud

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducepatch

refresh

2-219

2refreshPurpose Redraw current figure

Syntax refresh
refresh(h)

Description refresh erases and redraws the current figure.

refresh(h) redraws the figure identified by h.

rehash

2-220

2rehashPurpose Refresh function and file system caches

Syntax rehash
rehash path
rehash toolbox
rehash pathreset
rehash toolboxreset
rehash toolboxcache

Description rehash performs the same refresh that is done whenever MATLAB completes
a command and returns to its prompt. The rehash function rereads changed
directories, refreshes the list of known classes, and, if there are any functions
whose source files have changed since they were loaded into memory, rehash
clears those loaded functions.

rehash path is the same as rehash, except that it unconditionally rereads all
nontoolbox directories. This is the same as the behavior of path(path).

rehash toolbox is the same as rehash path, except that it unconditionally
rereads all directories, including all toolbox directories.

rehash pathreset is the same as rehash path, except that it also forces any
shadowed functions to be replaced by any shadowing functions.

rehash toolboxreset is the same as rehash toolbox, except that it also forces
any shadowed functions to be replaced by any shadowing functions.

rehash toolboxcache generates a new toolbox cache. To use this command,
you must first enable toolbox caching on your system. You also need read and
write access to the directory that holds the toolbox cache file.

See Also addpath, path, rmpath

release (activex)

2-221

2release (activex)Purpose Releases an interface.

Syntax release (a)

Arguments a
Activex object that represents the interface to be released.

Description Release the interface and all resources used by the interface. Each interface
handle must be released when you are finished manipulating its properties and
invoking its methods. Once an interface has been released, it is no longer valid
and subsequent ActiveX operations on the MATLAB object that represents
that interface will result in errors.

Note Releasing the interface will not delete the control itself (see delete),
since other interfaces on that object may still be active. See “Releasing
Interfaces” in MATLAB External Interfaces for more information.

Example release (a)

rem

2-222

2remPurpose Remainder after division

Syntax R = rem(X,Y)

Description R = rem(X,Y) returns X - fix(X./Y).*Y, where fix(X./Y) is the integer part
of the quotient, X./Y.

Remarks So long as operands X and Y are of the same sign, the statement rem(X,Y)
returns the same result as does mod(X,Y). However, for positive X and Y,

rem(-x,y) = mod(-x,y)-y

The rem function returns a result that is between 0 and sign(X)*abs(Y). If Y
is zero, rem returns NaN.

Limitations Arguments X and Y should be integers. Due to the inexact representation of
floating-point numbers on a computer, real (or complex) inputs may lead to
unexpected results.

See Also mod

repmat

2-223

2repmatPurpose Replicate and tile an array

Syntax B = repmat(A,m,n)
B = repmat(A,[m n])
B = repmat(A,[m n p...])
repmat(A,m,n)

Description B = repmat(A,m,n) creates a large matrix B consisting of an m-by-n tiling of
copies of A. The statement repmat(A,n) creates an n-by-n tiling.

B = repmat(A,[m n]) accomplishes the same result as repmat(A,m,n).

B = repmat(A,[m n p...]) produces a multidimensional (m-by-n-by-p-by-...)
array composed of copies of A. A may be multidimensional.

repmat(A,m,n) when A is a scalar, produces an m-by-n matrix filled with A’s
value. This can be much faster than a*ones(m,n) when m or n is large.

Examples In this example, repmat replicates 12 copies of the second-order identity
matrix, resulting in a “checkerboard” pattern.

B = repmat(eye(2),3,4)

B =
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

The statement N = repmat(NaN,[2 3]) creates a 2-by-3 matrix of NaNs.

reset

2-224

2resetPurpose Reset graphics object properties to their defaults

Syntax reset(h)

Description reset(h) resets all properties having factory defaults on the object identified
by h. To see the list of factory defaults, use the statement,

get(0,'factory')

If h is a figure, MATLAB does not reset Position, Units, PaperPosition, and
PaperUnits. If h is an axes, MATLAB does not reset Position and Units.

Examples reset(gca) resets the properties of the current axes.

reset(gcf) resets the properties of the current figure.

See Also cla, clf, gca, gcf, hold

reshape

2-225

2reshapePurpose Reshape array

Syntax B = reshape(A,m,n)
B = reshape(A,m,n,p,...)
B = reshape(A,[m n p ...])
B = reshape(A,...,[],...)
B = reshape(A,siz)

Description B = reshape(A,m,n) returns the m-by-n matrix B whose elements are taken
column-wise from A. An error results if A does not have m*n elements.

B = reshape(A,m,n,p,...) or B = reshape(A,[m n p ...]) returns an N-D
array with the same elements as A but reshaped to have the size
m-by-n-by-p-by-... . The product of the specified dimensions, m*n*p*..., must be
the same as prod(size(A)).

B = reshape(A,...,[],...) calculates the length of the dimension
represented by the placeholder [], such that the product of the dimensions
equals prod(size(A)). The value of prod(size(A))must be evenly divisible by
the product of the specified dimensions. You can use only one occurence of [].

B = reshape(A,siz) returns an N-D array with the same elements as A, but
reshaped to siz, a vector representing the dimensions of the reshaped array.
The quantity prod(siz) must be the same as prod(size(A)).

Examples Reshape a 3-by-4 matrix into a 2-by-6 matrix.

A =
 1 4 7 10
 2 5 8 11
 3 6 9 12

B = reshape(A,2,6)

B =
 1 3 5 7 9 11
 2 4 6 8 10 12
B = reshape(A,2,[])

reshape

2-226

B =
 1 3 5 7 9 11
 2 4 6 8 10 12

See Also shiftdim, squeeze

The colon operator :

residue

2-227

2residuePurpose Convert between partial fraction expansion and polynomial coefficients

Syntax [r,p,k] = residue(b,a)
[b,a] = residue(r,p,k)

Description The residue function converts a quotient of polynomials to pole-residue
representation, and back again.

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of a partial
fraction expansion of the ratio of two polynomials, and , of the form

where and are the jth elements of the input vectors b and a.

[b,a] = residue(r,p,k) converts the partial fraction expansion back to the
polynomials with coefficients in b and a.

Definition If there are no multiple roots, then

The number of poles n is

n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector is empty if length(b) < length(a);
otherwise

length(k) = length(b)-length(a)+1

If p(j) = ... = p(j+m-1) is a pole of multiplicity m, then the expansion
includes terms of the form

b s() a s()

b s()
a s()

b1sm b2sm 1– b3sm 2– … bm 1++ + + +

a1sn a2sn 1– a3sn 2– … an 1++ + + +
---=

b j a j

b s()
a s()

r1
s p1–

r2
s p2–
--------------- …

rn
s pn–
--------------- k s()+ + + +=

r j
s p j–

r j 1+

s p j–()2
----------------------- …

r j m 1–+

s p j–()m
------------------------+ + +

residue

2-228

Arguments

Algorithm It first obtains the poles with roots. Next, if the fraction is nonproper, the
direct term k is found using deconv, which performs polynomial long division.
Finally, the residues are determined by evaluating the polynomial with
individual roots removed. For repeated roots, resi2 computes the residues at
the repeated root locations.

Limitations Numerically, the partial fraction expansion of a ratio of polynomials represents
an ill-posed problem. If the denominator polynomial, , is near a polynomial
with multiple roots, then small changes in the data, including roundoff errors,
can make arbitrarily large changes in the resulting poles and residues.
Problem formulations making use of state-space or zero-pole representations
are preferable.

Examples If the ratio of two polynomials is expressed as

then

b = [5 3 -2 7]
a = [-4 0 8 3]

and you can calculate the partial fraction expansion as

[r, p, k] = residue(b,a)

r =
 -1.4167
 -0.6653
 1.3320

b,a Vectors that specify the coefficients of the polynomials in descending
powers of

r Column vector of residues

p Column vector of poles

k Row vector of direct terms

s

a s()

b s()
a s()
----------- 5s3 3s2 2s– 7+ +

4s3
– 8s 3+ +

---=

residue

2-229

p =
 1.5737
 -1.1644
 -0.4093

k =
 -1.2500

Now, convert the partial fraction expansion back to polynomial coefficients.

[b,a] = residue(r,p,k)

b =
 -1.2500 -0.7500 0.5000 -1.7500

a =
 1.0000 -0.0000 -2.0000 -0.7500

The result can be expressed as

Note that the result is normalized for the leading coefficient in the
denominator.

See Also deconv, poly, roots

References [1] Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, 1975, p. 56.

b s()
a s()
----------- 1.25s3

– 0.75s2
– 0.50s 1.75–+

s3 2.00s– 0.75–
--=

return

2-230

2returnPurpose Return to the invoking function

Syntax return

Description return causes a normal return to the invoking function or to the keyboard. It
also terminates keyboard mode.

Examples If the determinant function were an M-file, it might use a return statement in
handling the special case of an empty matrix as follows:

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)
 d = 1;
 return
else
 ...
end

See Also break, disp, end, error, for, if, keyboard, switch, while

rgb2hsv

2-231

2rgb2hsvPurpose Convert RGB colormap to HSV colormap

Syntax cmap = rgb2hsv(M)

Description cmap = rgb2hsv(M) converts an RGB colormap, M, to an HSV colormap, cmap.
Both colormaps are m-by-3 matrices. The elements of both colormaps are in the
range 0 to 1.

The columns of the input matrix, M, represent intensities of red, green, and
blue, respectively. The columns of the output matrix, cmap, represent hue,
saturation, and value, respectively.

hsv_image = rgb2hsv(rgb_image) converts the RGB image (3-D array) to the
equivalent HSV image (3-D array).

See Also brighten, colormap, hsv2rgb,rgbplot

rgbplot

2-232

2rgbplotPurpose Plot colormap

Syntax rgbplot(cmap)

Description rgbplot(cmap) plots the three columns of cmap, where cmap is an m-by-3
colormap matrix. rgbplot draws the first column in red, the second in green,
and the third in blue.

Examples Plot the RGB values of the copper colormap.

rgbplot(copper)

See Also colormap

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ribbon

2-233

2ribbonPurpose Ribbon plot

Syntax ribbon(Y)
ribbon(X,Y)
ribbon(X,Y,width)
h = ribbon(...)

Description ribbon(Y) plots the columns of Y as separate three-dimensional ribbons using
X = 1:size(Y,1).

ribbon(X,Y) plots X versus the columns of Y as three-dimensional strips. X and
Y are vectors of the same size or matrices of the same size. Additionally, X can
be a row or a column vector, and Y a matrix with length(X) rows.

ribbon(X,Y,width) specifies the width of the ribbons. The default is 0.75.

h = ribbon(...) returns a vector of handles to surface graphics objects.
ribbon returns one handle per strip.

Examples Create a ribbon plot of the peaks function.

[x,y] = meshgrid(-3:.5:3,-3:.1:3);
z = peaks(x,y);
ribbon(y,z)
colormap hsv

ribbon

2-234

See Also plot, plot3, surface, waterfall

0

5

10

15

−4

−2

0

2

4
−10

−5

0

5

10

rmappdata

2-235

2rmappdataPurpose Remove application-defined data

Syntax rmappdata(h,name,value)

Description rmappdata(h,name,value) removes the application-defined data name from
the object specified by handle h.

See Also getappdata, isappdata, setappdata

rmfield

2-236

2rmfieldPurpose Remove structure fields

Syntax s = rmfield(s,'field')
s = rmfield(s,FIELDS)

Description s = rmfield(s,'field') removes the specified field from the structure array
s.

s = rmfield(s,FIELDS) removes more than one field at a time when FIELDS
is a character array of field names or cell array of strings.

See Also getfield, setfield, fieldnames

rmpath

2-237

2rmpathPurpose Remove directories from MATLAB search path

Graphical
Interface

As an alternative to the rmpath function, use the Set Path dialog box.To open
it, select Set Path from the File menu in the MATLAB desktop.

Syntax rmpath('directory')
rmpath directory

Description rmpath('directory') removes the specified directory from MATLAB’s
current search path. Use the full pathname for directory.

rmpath directory is the unquoted form of the syntax.

Examples To remove /usr/local/matlab/mytools from the search path, type

rmpath /usr/local/matlab/mytools

See Also addpath, path, rehash, pathtool

root object

2-238

2root objectPurpose Root object properties

Description The root is a graphics object that corresponds to the computer screen. There is
only one root object and it has no parent. The children of the root object are
figures.

The root object exists when you start MATLAB; you never have to create it and
you cannot destroy it. Use set and get to access the root properties.

See Also diary, echo, figure, format, gcf, get, set

Object
Hierarchy

Property List The following table lists all root properties and provides a brief description of
each. The property name links take you to an expanded description of the

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

root object

2-239

properties. This table does not include properties that are defined for, but not
used by, the root object.

Property Name Property Description Property Value

Information about MATLAB’s state

CallbackObject Handle of object whose callback is
executing

Values: object handle

CurrentFigure Handle of current figure Values: object handle

ErrorMessage Text of last error message Value: character string

PointerLocation Current location of pointer Values: x-, and y-coordinates

PointerWindow Handle of window containing the
pointer

Values: figure handle

ShowHiddenHandles Show or hide handles marked as
hidden

Values: on, off
Default: off

Controlling MATLAB’s behavior

Diary Enable the diary file Values: on, off
Default: off

DiaryFile Name of the diary file Values: filename (string)
Default: diary

Echo Display each line of script M-file as
executed

Values: on, off
Default: off

Format Format used to display numbers Values: short, shortE, long,
longE, bank, hex, +, rat
Default: shortE

FormatSpacing Display or omit extra line feed Values: compact, loose
Default: loose

Language System environment setting Values: string
Default: english

root object

2-240

RecursionLimit Maximum number of nested M-file
calls

Values: integer
Defalut: 2.1478e+009

Units Units for PointerLocation and
ScreenSize properties

Values: pixels, normalized,
inches, centimeters,
points, characters
Default: pixels

Information about the display

FixedWidthFontName Value for axes, text, and uicontrol
FontName property

Values: font name
Default: Courier

ScreenDepth Depth of the display bitmap Values: bits per pixel

ScreenSize Size of the screen Values: [left, bottom, width,
height]

General Information About Root Objects

Children Handles of all nonhidden Figue
objects

Values: vector of handles

Parent The root object has no parent Value: [] (empty matrix)

Selected This property is not used by the root
object.

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'root'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Property Name Property Description Property Value

Root Properties

2-241

2Root PropertiesRoot Properties This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}

Not used by the root object.

ButtonDownFcn string

Not used by the root object.

CallbackObject handle (read only)

Handle of current callback’s object. This property contains the handle of the
object whose callback routine is currently executing. If no callback routines are
executing, this property contains the empty matrix []. See also the gco
command.

CaptureMatrix (obsolete)

This property has been superseded by the getframe command.

CaptureRect (obsolete)

This property has been superseded by the getframe command.

Children vector of handles

Handles of child objects. A vector containing the handles of all nonhidden
figure objects. You can change the order of the handles and thereby change the
stacking order of the figures on the display.

Clipping {on} | off

Clipping has no effect on the root object.

CreateFcn

The root does not use this property.

CurrentFigure figure handle

Handle of the current figure window, which is the one most recently created,
clicked in, or made current with the statement:

figure(h)

which restacks the figure to the top of the screen, or

set(0,'CurrentFigure',h)

Root Properties

2-242

which does not restack the figures. In these statements, h is the handle of an
existing figure. If there are no figure objects,

get(0,'CurrentFigure')

returns the empty matrix. Note, however, that gcf always returns a figure
handle, and creates one if there are no figure objects.

DeleteFcn string

This property is not used since you cannot delete the root object

Diary on | {off}

Diary file mode. When this property is on, MATLAB maintains a file (whose
name is specified by the DiaryFile property) that saves a copy of all keyboard
input and most of the resulting output. See also the diary command.

DiaryFile string

Diary filename. The name of the diary file. The default name is diary.

Echo on | {off}

Script echoing mode. When Echo is on, MATLAB displays each line of a script
file as it executes. See also the echo command.

ErrorMessage string

Text of last error message. This property contains the last error message issued
by MATLAB.

FixedWidthFontName font name

Fixed-width font to use for axes, text, and uicontrols whose FontName is set to
FixedWidth. MATLAB uses the font name specified for this property as the
value for axes, text, and uicontrol FontName properties when their FontName
property is set to FixedWidth. Specifying the font name with this property
eliminates the need to hardcode font names in MATLAB applications and
thereby enables these applications to run without modification in locales where
non-ASCII character sets are required. In these cases, MATLAB attempts to
set the value of FixedWidthFontName to the correct value for a given locale.

MATLAB application developers should not change this property, but should
create axes, text, and uicontrols with FontName properties set to FixedWidth
when they want to use a fixed width font for these objects.

Root Properties

2-243

MATLAB end users can set this property if they do not want to use the
preselected value. In locales where Latin-based characters are used, Courier is
the default.

Format short | {shortE} | long | longE | bank |
hex | + | rat

Output format mode. This property sets the format used to display numbers.
See also the format command.

• short – Fixed-point format with 5 digits.

• shortE – Floating-point format with 5 digits.

• shortG – Fixed- or floating-point format displaying as many significant
figures as possible with 5 digits.

• long – Scaled fixed-point format with 15 digits.

• longE – Floating-point format with 15 digits.

• longG – Fixed- or floating-point format displaying as many significant figures
as possible with 15 digits.

• bank – Fixed-format of dollars and cents.

• hex – Hexadecimal format.

• + – Displays + and – symbols.

• rat – Approximation by ratio of small integers.

FormatSpacing compact | {loose}

Output format spacing (see also format command).

• compact — Suppress extra line feeds for more compact display.

• loose — Display extra line feeds for a more readable display.

HandleVisibility {on} | callback | off

This property is not useful on the root object.

HitTest {on} | off

This property is not useful on the root object.

Interruptible {on} | off

This property is not useful on the root object.

Root Properties

2-244

Language string

System environment setting.

Parent handle

Handle of parent object. This property always contains the empty matrix, as
the root object has no parent.

PointerLocation [x,y]

Current location of pointer. A vector containing the x- and y-coordinates of the
pointer position, measured from the lower-left corner of the screen. You can
move the pointer by changing the values of this property. The Units property
determines the units of this measurement.

This property always contains the instantaneous pointer location, even if the
pointer is not in a MATLAB window. A callback routine querying the
PointerLocation can get a different value than the location of the pointer when
the callback was triggered. This difference results from delays in callback
execution caused by competition for system resources.

PointerWindow handle (read only)

Handle of window containing the pointer. MATLAB sets this property to the
handle of the figure window containing the pointer. If the pointer is not in a
MATLAB window, the value of this property is 0. A callback routine querying
the PointerWindow can get the wrong window handle if you move the pointer to
another window before the callback executes. This error results from delays in
callback execution caused by competition for system resources.

RecursionLimit integer

Number of nested M-file calls. This property sets a limit to the number of
nested calls to M-files MATLAB will make before stoping (or potentially
running out of memory). By default the value is set to a large value. Setting this
property to a smaller value (something like 150, for example) should prevent
MATLAB from running out of memory and will instead cause MATLAB to
issue an error when the limit is reached.

ScreenDepth bits per pixel

Screen depth. The depth of the display bitmap (i.e., the number of bits per
pixel). The maximum number of simultaneously displayed colors on the
current graphics device is 2 raised to this power.

Root Properties

2-245

ScreenDepth supersedes the BlackAndWhite property. To override automatic
hardware checking, set this property to 1. This value causes MATLAB to
assume the display is monochrome. This is useful if MATLAB is running on
color hardware but is displaying on a monochrome terminal. Such a situation
can cause MATLAB to determine erroneously that the display is color.

ScreenSize 4-element rectangle vector (read only)

Screen size. A four-element vector,

[left,bottom,width,height]

that defines the display size. left and bottom are 0 for all Units except pixels,
in which case left and bottom are 1. width and height are the screen
dimensions in units specified by the Units property.

Selected on | off

This property has no effect on the root level.

SelectionHighlight {on} | off

This property has no effect on the root level.

ShowHiddenHandles on | {off}

Show or hide handles marked as hidden. When set to on, this property disables
handle hiding and exposes all object handles, regardless of the setting of an
object’s HandleVisibility property. When set to off, all objects so marked
remain hidden within the graphics hierarchy.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. While it is not necessary to identify
the root object with a tag (since its handle is always 0), you can use this
property to store any string value that you can later retrieve using set.

Type string (read only)

Class of graphics object. For the root object, Type is always 'root'.

UIContextMenu handle

This property has no effect on the root level.

Root Properties

2-246

Units {pixels} | normalized | inches | centimeters
| points | characters

Unit of measurement. This property specifies the units MATLAB uses to
interpret size and location data. All units are measured from the lower-left
corner of the screen. Normalized units map the lower-left corner of the screen
to (0,0) and the upper right corner to (1.0,1.0). inches, centimeters, and points
are absolute units (one point equals 1/72 of an inch). Characters are units
defined by characters from the default system font; the width of one unit is the
width of the letter x, the height of one character is the distance between the
baselines of two lines of text.

This property affects the PointerLocation and ScreenSize properties. If you
change the value of Units, it is good practice to return it to its default value
after completing your operation so as not to affect other functions that assume
Units is set to the default value.

UserData matrix

User specified data. This property can be any data you want to associate with
the root object. MATLAB does not use this property, but you can access it using
the set and get functions.

Visible {on} | off

Object visibility. This property has no effect on the root object.

roots

2-247

2rootsPurpose Polynomial roots

Syntax r = roots(c)

Description r = roots(c) returns a column vector whose elements are the roots of the
polynomial c.

Row vector c contains the coefficients of a polynomial, ordered in descending
powers. If c has n+1 components, the polynomial it represents is

.

Remarks Note the relationship of this function to p = poly(r), which returns a row
vector whose elements are the coefficients of the polynomial. For vectors, roots
and poly are inverse functions of each other, up to ordering, scaling, and
roundoff error.

Examples The polynomial is represented in MATLAB as

p = [1 -6 -72 -27]

The roots of this polynomial are returned in a column vector by

r = roots(p)
r =
 12.1229
 -5.7345
 -0.3884

Algorithm The algorithm simply involves computing the eigenvalues of the companion
matrix:

A = diag(ones(n-2,1),-1);
A(1,:) = -c(2:n-1)./c(1);
eig(A)

It is possible to prove that the results produced are the exact eigenvalues of a
matrix within roundoff error of the companion matrix A, but this does not mean
that they are the exact roots of a polynomial with coefficients within roundoff
error of those in c.

See Also fzero, poly, residue

c1sn … cns cn 1++ + +

s3 6s2– 72s– 27–

rose

2-248

2rosePurpose Angle histogram

Syntax rose(theta)
rose(theta,x)
rose(theta,nbins)
[tout,rout] = rose(...)

Description rose creates an angle histogram, which is a polar plot showing the distribution
of values grouped according to their numeric range. Each group is shown as one
bin.

rose(theta) plots an angle histogram showing the distribution of theta in 20
angle bins or less. The vector theta, expressed in radians, determines the angle
from the origin of each bin. The length of each bin reflects the number of
elements in theta that fall within a group, which ranges from 0 to the greatest
number of elements deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the locations of
bins. length(x) is the number of bins and the values of x specify the center
angle of each bin. For example, if x is a five-element vector, rose distributes
the elements of theta in five bins centered at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0, 2*pi].
The default is 20.

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout,rout) generates the histogram for the data. This syntax does not
generate a plot.

Example Create a rose plot showing the distribution of 50 random numbers.

theta = 2*pi*rand(1,50);
rose(theta)

rose

2-249

See Also compass, feather, hist, polar

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

rosser

2-250

2rosserPurpose Classic symmetric eigenvalue test problem

Syntax A = rosser

Description A = rosser returns the Rosser matrix. This matrix was a challenge for many
matrix eigenvalue algorithms. But LAPACK's DSYEV routine used in MATLAB
has no trouble with it. The matrix is 8-by-8 with integer elements. It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

Examples rosser

ans =

 611 196 -192 407 -8 -52 -49 29
 196 899 113 -192 -71 -43 -8 -44
 -192 113 899 196 61 49 8 52
 407 -192 196 611 8 44 59 -23
 -8 -71 61 8 411 -599 208 208
 -52 -43 49 44 -599 411 208 208
 -49 -8 8 59 208 208 99 -911
 29 -44 52 -23 208 208 -911 99

rot90

2-251

2rot90Purpose Rotate matrix 90˚

Syntax B = rot90(A)
B = rot90(A,k)

Description B = rot90(A) rotates matrix A counterclockwise by 90 degrees.

B = rot90(A,k) rotates matrix A counterclockwise by k*90 degrees, where k is
an integer.

Examples The matrix

X =
 1 2 3
 4 5 6
 7 8 9

rotated by 90 degrees is

Y = rot90(X)
Y =
 3 6 9
 2 5 8
 1 4 7

See Also flipdim, fliplr, flipud

rotate

2-252

2rotatePurpose Rotate object about a specified direction

Syntax rotate(h,direction,alpha)
rotate(...,origin)

Description The rotate function rotates a graphics object in three-dimensional space,
according to the right-hand rule.

rotate(h,direction,alpha) rotates the graphics object h by alpha degrees.
direction is a two- or three-element vector that describes the axis of rotation
in conjunction with the origin.

rotate(...,origin) specifies the origin of the axis of rotation as a
three-element vector. The default origin is the center of the plot box.

Remarks The graphics object you want rotated must be a child of the same axes. The
object’s data is modified by the rotation transformation. This is in contrast to
view and rotate3d, which only modify the viewpoint.

The axis of rotation is defined by an origin and a point P relative to the origin.
P is expressed as the spherical coordinates [theta phi], or as Cartesian
coordinates.

The two-element form for direction specifies the axis direction using the
spherical coordinates [theta phi]. theta is the angle in the xy plane

Z

Y

X

P

origin
axis of ro

tation

rotate

2-253

counterclockwise from the positive x-axis. phi is the elevation of the direction
vector from the xy plane.

The three-element form for direction specifies the axis direction using
Cartesian coordinates. The direction vector is the vector from the origin to
(X,Y,Z).

Examples Rotate a graphics object 180° about the x-axis.

h = surf(peaks(20));
rotate(h,[1 0 0],180)

Rotate a surface graphics object 45° about its center in the z direction.

h = surf(peaks(20));
zdir = [0 0 1];
center = [10 10 0];
rotate(h,zdir,45,center)

Remarks rotate changes the Xdata, Ydata, and Zdata properties of the appropriate
graphics object.

See Also rotate3d, sph2cart, view

The axes CameraPosition, CameraTarget, CameraUpVector, CameraViewAngle

Z

Y

X

theta

P

phi

r

rotate3d

2-254

2rotate3dPurpose Rotate axes using mouse

Syntax rotate3d
rotate3d on
rotate3d off

Description rotate3d on enables interactive axes rotation within the current figure using
the mouse. When interactive axes rotation is enabled, clicking on an axes
draws an animated box, which rotates as the mouse is dragged, showing the
view that will result when the mouse button is released. A numeric readout
appears in the lower-left corner of the figure during this time, showing the
current azimuth and elevation of the animated box. Releasing the mouse
button removes the animated box and the readout, and changes the view of the
axes to correspond to the last orientation of the animated box.

rotate3d off disables interactive axes rotation in the current figure.

rotate3d toggles interactive axes rotation in the current figure.

Double clicking on the figure restores the original view.

See Also camorbit, rotate, view

round

2-255

2roundPurpose Round to nearest integer

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. For complex X,
the imaginary and real parts are rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
 Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

round(a)

ans =
 Columns 1 through 4
-2.0000 0 3.0000 6.0000

 Columns 5 through 6
 7.0000 2.0000 + 4.0000i

See Also ceil, fix, floor

rref

2-256

2rrefPurpose Reduced row echelon form

Syntax R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)

Description R = rref(A) produces the reduced row echelon form of A using Gauss Jordan
elimination with partial pivoting. A default tolerance of
(max(size(A))*eps *norm(A,inf)) tests for negligible column elements.

[R,jb] = rref(A) also returns a vector jb so that:

• r = length(jb) is this algorithm's idea of the rank of A,

• x(jb) are the bound variables in a linear system Ax = b,

• A(:,jb) is a basis for the range of A,

• R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = rref(A,tol) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different value for the
rank than rank, orth and null.

Note The demo rrefmovie(A) shows a movie of the algorithm working.

Examples Use rref on a rank-deficient magic square:

A = magic(4), R = rref(A)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1
R =
 1 0 0 1
 0 1 0 3
 0 0 1 -3
 0 0 0 0

rref

2-257

See Also inv, lu, rank

rsf2csf

2-258

2rsf2csfPurpose Convert real Schur form to complex Schur form

Syntax [U,T] = rsf2csf(U,T)

Description The complex Schur form of a matrix is upper triangular with the eigenvalues
of the matrix on the diagonal. The real Schur form has the real eigenvalues on
the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex form.

Arguments U and T represent the unitary and Schur forms of a matrix A,
respectively, that satisfy the relationships: A = U*T*U' and U'*U =
eye(size(A)). See schur for details.

Examples Given matrix A,

 1 1 1 3
 1 2 1 1
 1 1 3 1
-2 1 1 4

with the eigenvalues

4.8121 1.9202 + 1.4742i 1.9202 + 1.4742i 1.3474

Generating the Schur form of A and converting to the complex Schur form

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

yields a triangular matrix T whose diagonal (underlined here for readability)
consists of the eigenvalues of A.

U =

-0.4916 -0.2756 - 0.4411i 0.2133 + 0.5699i -0.3428
-0.4980 -0.1012 + 0.2163i -0.1046 + 0.2093i 0.8001
-0.6751 0.1842 + 0.3860i -0.1867 - 0.3808i -0.4260
-0.2337 0.2635 - 0.6481i 0.3134 - 0.5448i 0.2466

rsf2csf

2-259

T =

4.8121 -0.9697 + 1.0778i -0.5212 + 2.0051i -1.0067
 0 1.9202 + 1.4742i 2.3355 0.1117 + 1.6547i
 0 0 1.9202 - 1.4742i 0.8002 + 0.2310i
 0 0 0 1.3474

See Also schur

run

2-260

2runPurpose Run a script

Syntax run scriptname

Description run scriptname runs the MATLAB script specified by scriptname. If
scriptname contains the full pathname to the script file, then run changes the
current directory to be the one in which the script file resides, executes the
script, and sets the current directory back to what it was. The script is run
within the caller's workspace.

run is a convenience function that runs scripts that are not currently on the
path. Typically, you just type the name of a script at the MATLAB prompt to
execute it. This works when the script is on your path. Use the cd or addpath
function to make a script executable by entering the script name alone.

See Also cd, addpath

runtime

2-261

2runtimePurpose Emulate the runtime environment in MATLAB and set the global error mode

Syntax runtime on
runtime off
runtime status
runtime errormode mode

Description The runtime command lets you emulate the Runtime Server environment in
commercial MATLAB and set the global error mode for a runtime application.
Because the Runtime Server disables the command window, it is generally
much more convenient to test and debug with MATLAB emulating the
Runtime Server than with the Runtime Server variant itself.

runtime on tells commercial MATLAB to begin emulating the Runtime Server.
This means that MATLAB executes neither M-files nor standard P-files. The
command line remains accessible.

runtime off returns MATLAB to its ordinary state.

runtime status indicates whether MATLAB is emulating the Runtime Server
or not.

runtime errormode mode sets the global error mode to mode. The value of mode
can be either continue, quit, or dialog. However, dialog is both the default
error mode and the recommended one.

The error mode setting is only effective when the application runs with the
Runtime Server; when the application runs with commercial MATLAB
emulating the Runtime Server, untrapped errors are always displayed in the
command window.

See Also isruntime

save

2-262

2savePurpose Save workspace variables on disk

Graphical
Interface

As an alternative to the save function, select Save Workspace As from the File
menu in the MATLAB desktop, or use the Workspace browser.

Syntax save
save filename
save filename var1 var2 ...
save ... option
save('filename', ...)

Description save by itself, stores all workspace variables in a binary format in the current
directory in a file named matlab.mat. Retrieve the data with load. MAT-files
are double-precision, binary, MATLAB format files. They can be created on one
machine and later read by MATLAB on another machine with a different
floating-point format, retaining as much accuracy and range as the different
formats allow. They can also be manipulated by other programs external to
MATLAB.

save filename stores all workspace variables in the current directory in
filename.mat. To save to another directory, use the full pathname for the
filename. If filename is the special string stdio, the save command sends the
data as standard output.

save filename var1 var2 ... saves only the specified workspace variables
in filename.mat. Use the * wildcard to save only those variables that match
the specified pattern. For example, save('A*') saves all variables that start
with A.

save ... option saves the workspace variables in the format specified by
option

option Argument Result: How Data is Stored

-append The specified existed MAT-file, appended
to the end

-ascii 8-digit ASCII format

save

2-263

Remarks When saving in ASCII format, consider the following:

• Each variable to be saved must be either a two dimensional double array or
a two dimensional character array. Saving a complex double array causes
the imaginary part of the data to be lost, as MATLAB cannot load
nonnumeric data ('i').

• In order to be able to read the file with the MATLAB load function, all of the
variables must have the same number of columns. If you are using a program
other than MATLAB to read the saved data this restriction can be relaxed.

• Each MATLAB character in a character array is converted to a floating point
number equal to its internal ASCII code and written out as a floating point
number string. There is no information in the save file that indicates
whether the value was originally a number or a character.

• The values of all variables saved merge into a single variable that takes the
name of the ASCII file (minus any extension). Therefore, it is advisable to
save only one variable at a time.

With the v4 flag, you can only save data constructs that are compatible with
versions of MATLAB 4. Therefore, you cannot save structures, cell arrays,
multidimensional arrays, or objects. In addition, you must use filenames that
are supported by MATLAB version 4.

save('filename', ...) is the function form of the syntax.

For more control over the format of the file, MATLAB provides other functions,
as listed in “See Also”, below.

-ascii -double 16-digit ASCII format

-ascii -tabs delimits with tabs

-ascii -double -tabs 16-digit ASCII format, tab delimited

-mat Binary MAT-file form (default)

-v4 A format that MATLAB version 4 can
open

option Argument Result: How Data is Stored

save

2-264

Algorithm The binary formats used by save depend on the size and type of each array.
Arrays with any noninteger entries and arrays with 10,000 or fewer elements
are saved in floating-point formats requiring 8 bytes per real element. Arrays
with all integer entries and more than 10,000 elements are saved in the
formats shown, requiring fewer bytes per element.

External Interfaces to MATLAB provides details on reading and writing
MAT-files from external C or Fortran programs. It is important to use
recommended access methods, rather than rely upon the specific MAT-file
format, which is likely to change in the future.

Examples To save all variables from the workspace in binary MAT-file, test.mat, type

save test.mat

To save variables p and q in binary MAT-file, test.mat, type

savefile = 'test.mat';
p = rand(1,10);
q = ones(10);
save(savefile,'p','q')

To save the variables vol and temp in ASCII format to a file named june10,
type

save('d:\mymfiles\june10','vol','temp','-ASCII’)

See Also diary, fprintf, fwrite, load, workspace

Element Range Bytes per Element

0 to 255 1

0 to 65535 2

-32767 to 32767 2

-231+1 to 231-1 4

other 8

save (activex)

2-265

2save (activex)Purpose Serialize an ActiveX control object to a file.

Syntax save(h, filename)

Arguments h
A MATLAB ActiveX object.

filename
The full pathname of the serialized data.

Description Save the ActiveX control object associated with the interface represented by
the MATLAB ActiveX object H into a file. filename is the full pathname of the
serialized data.

Example h = actxcontrol('MwSamp.mwsampctrl.1');
save(h, 'c:\temp\mycontrol.acx');

save (serial)

2-266

2save (serial)Purpose Save serial port objects and variables to a MAT-file

Syntax save filename
save filename obj1 obj2...

Arguments

Description save filename saves all MATLAB variables to the MAT-file filename. If an
extension is not specified for filename, then the .mat extension is used.

save filename obj1 obj2... saves the serial port objects obj1 obj2 ... to the
MAT-file filename.

Remarks You can use save in the functional form as well as the command form shown
above. When using the functional form, you must specify the filename and
serial port objects as strings. For example. to save the serial port object s to the
file MySerial.mat

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the serial port object is not automatically
stored in the MAT-file. For example, suppose there is data in the input buffer
for obj. To save that data to a MAT-file, you must bring it into the MATLAB
workspace using one of the synchronous read functions, and then save to the
MAT-file using a separate variable name. You can also save data to a text file
with the record function.

You return objects and variables to the MATLAB workspace with the load
command. Values for read-only properties are restored to their default values
upon loading. For example, the Status property is restored to closed. To
determine if a property is read-only, examine its reference pages.

If you use the help command to display help for save, then you need to supply
the pathname shown below.

help serial/private/save

Example This example illustrates how to use the command and functional form of save.

filename The MAT-file name.

obj1 obj2... Serial port objects or arrays of serial port objects.

save (serial)

2-267

s = serial('COM1');
set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s
set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

See Also Functions
load, record

Properties
Status

saveas

2-268

2saveasPurpose Save figure or model using specified format

Syntax saveas(h,'filename.ext')
saveas(h,'filename','format')

Description saveas(h,'filename.ext') saves the figure or model with the handle h to the
file filename.ext. The format of the file is determined by the extension, ext.
Allowable values for ext are listed in this table.

saveas(h,'filename','format') saves the figure or model with the handle h
to the file called filename using the specified format. The filename can have
an extension but the extension is not used to define the file format. If no
extension is specified, the standard extension corresponding to the specified
format is automatically appended to the filename.

ext Values Format

ai Adobe Illustrator ‘88

bmp Windows bitmap

emf Enhanced metafile

eps EPS Level 1

fig MATLAB figure (invalid for MATLAB models)

jpg JPEG image (invalid for MATLAB models)

m MATLAB M-file (invalid for MATLAB models)

pbm Portable bitmap

pcx Paintbrush 24-bit

pgm Portable Graymap

png Portable Network Graphics

ppm Portable Pixmap

tif TIFF image, compressed

saveas

2-269

Allowable values for format are the extensions in the table above and the
device types supported by print. The print device types include the formats
listed in the table of extensions above as well as additional file formats. Use an
extension from the table above or from the list of device types supported by
print. When using the print device type to specify format for saveas, do not
use the prepended -d.

Remarks You can use open to open files saved using saveas with an m or fig extension.
Other formats are not supported by open. The Save As dialog box you access
from the figure window’s File menu uses saveas, limiting the file extensions to
m and fig. The Export dialog box you access from the figure window’s File
menu uses saveas with the format argument.

Examples Example 1 – Specify File Extension
Save the current figure that you annotated using the Plot Editor to a file named
pred_prey using the MATLAB fig format. This allows you to open the file
pred_prey.fig at a later time and continue editing it with the Plot Editor.

saveas(gcf,'pred_prey.fig')

Example 2 – Specify File Format but No Extension
Save the current figure, using Adobe Illustrator format, to the file logo. Use
the ai extension from the above table to specify the format. The file created is
logo.ai.

saveas(gcf,'logo', 'ai')

This is the same as using the Adobe Illustrator format from the print devices
table, which is -dill; use doc print or help print to see the table for print
device types. The file created is logo.ai. MATLAB automatically appends the
ai extension, for an Illustrator format file, because no extension was specified.

saveas(gcf,'logo', 'ill')

Example 3 – Specify File Format and Extension
Save the current figure to the file star.eps using the Level 2 Color PostScript
format. If you use doc print or help print, you can see from the table for print
device types that the device type for this format is -dpsc2. The file created is
star.eps.

saveas

2-270

saveas(gcf,'star.eps', 'psc2')

In another example, save the current model to the file trans.tiff using the
TIFF format with no compression. From the table for print device types, you
can see the device type for this format is -dtiffn. The file created is
trans.tiff.

saveas(gcf,'trans.tiff', 'tiffn')

See Also open, print

saveobj

2-271

2saveobjPurpose Save an object to a MAT-file

Syntax B = saveobj(A)

Description B = saveobj(A) is called by the MATLAB save function when object, A, is
saved to a .MAT file. This call executes the saveobj method for the object’s
class, if such a method exists. The return value B is subsequently used by save
to populate the .MAT file.

When you issue a save command on an object, MATLAB looks for a method
called saveobj in the class directory. You can overload this method to modify
the object before the save operation. For example, you could define a saveobj
method that saves related data along with the object.

Remarks saveobj can be overloaded only for user objects. save will not call saveobj for
a built-in datatype, such as double, even if @double/saveobj exists.

saveobj will be separately invoked for each object to be saved.

A child object does not inherit the saveobj method of its parent class. To
implement saveobj for any class, including a class that inherits from a parent,
you must define a saveobj method within that class directory.

Examples The following example shows a saveobj method written for the portfolio
class. The method determines if a portfolio object has already been assigned
an account number from a previous save operation. If not, saveobj calls
getAccountNumber to obtain the number and assigns it to the account_number
field. The contents of b is saved to the MAT-file.

function b = saveobj(a)
if isempty(a.account_number)
 a.account_number = getAccountNumber(a);
end
b = a;

See Also save, load, loadobj

scatter

2-272

2scatterPurpose 2-D Scatter plot

Syntax scatter(X,Y,S,C)
scatter(X,Y)
scatter(X,Y,S)
scatter(...,markertype)
scatter(...,'filled')
h = scatter(...,)

Description scatter(X,Y,S,C) displays colored circles at the locations specified by the
vectors X and Y (which must be the same size).

S determines the area of each marker (specified in points^2). S can be a vector
the same length as X and Y or a scalar. If S is a scalar, MATLAB draws all the
markers the same size.

C determines the colors of each marker. When C is a vector the same length as
X and Y, the values in C are linearly mapped to the colors in the current
colormap. When C is a length(X)-by-3 matrix, it specifies the colors of the
markers as RGB values. C can also be a color string (see ColorSpec for a list of
color string specifiers)

scatter(X,Y) draws the markers in the default size and color.

scatter(X,Y,S) draws the markers at the specified sizes (S) with a single
color.

scatter(...,markertype) uses the marker type specified instead of 'o' (see
LineSpec for a list of marker specifiers).

scatter(...,'filled') fills the markers.

h = scatter(...) returns the handles to the line objects created by scatter
(see line for a list of properties you can specify using the object handles and
set).

Remarks Use plot for single color, single marker size scatter plots.

Examples load seamount
scatter(x,y,5,z)

scatter

2-273

See Also scatter3, plot, plotmatrix

210.8 210.9 211 211.1 211.2 211.3 211.4 211.5 211.6 211.7 211.8
−48.45

−48.4

−48.35

−48.3

−48.25

−48.2

−48.15

−48.1

−48.05

−48

−47.95

scatter3

2-274

2scatter3Purpose 3-D scatter plot

Syntax scatter3(X,Y,Z,S,C)
scatter3(X,Y,Z)
scatter3(X,Y,Z,S)
scatter3(...,markertype)
scatter3(...,'filled')
h = scatter3(...,)

Description scatter3(X,Y,Z,S,C) displays colored circles at the locations specified by the
vectors X, Y, and Z (which must all be the same size).

S determines the size of each marker (specified in points). S can be a vector the
same length as X, Y, and Z or a scalar. If S is a scalar, MATLAB draws all the
markers the same size.

C determines the colors of each marker. When C is a vector the same length as
X, Y, and Z, the values in C are linearly mapped to the colors in the current
colormap. When C is a length(X)-by-3 matrix, it specifies the colors of the
markers as RGB values. C can also be a color string (see ColorSpec for a list of
color string specifiers)

scatter3(X,Y,Z) draws the markers in the default size and color.

scatter3(X,Y,Z,S) draws the markers at the specified sizes (S) with a single
color.

scatter3(...,markertype) uses the marker type specified instead of 'o' (see
LineSpec for a list of marker specifiers).

scatter3(...,'filled') fills the markers.

h = scatter3(...) returns the handles to the line objects created by scatter3
(see line for a list of properties you can specify using the object handles and
set).

Remarks Use plot3 for single color, single marker size 3-D scatter plots.

Examples [x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];

scatter3

2-275

Z = [z(:)*.5 z(:)*.75 z(:)];
S = repmat([1 .75 .5]*10,prod(size(x)),1);
C = repmat([1 2 3],prod(size(x)),1);
scatter3(X(:),Y(:),Z(:),S(:),C(:),’filled’), view(−60,60)

See Also scatter, plot3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

schur

2-276

2schurPurpose Schur decomposition

Syntax T = schur(A)
T = schur(A,flag)
[U,T] = schur(A,...)

Description The schur command computes the Schur form of a matrix.

T = schur(A) returns the Schur matrix T.

T = schur(A,flag) for real matrix A, returns a Schur matrix T in one of two
forms depending on the value of flag:

If A is complex, schur returns the complex Schur form in matrix T. The complex
Schur form is upper triangular with the eigenvalues of A on the diagonal.

The function rsf2csf converts the real Schur form to the complex Schur form.

[U,T] = schur(A,...) also returns a unitary matrix U so that A = U*T*U'
and U'*U = eye(size(A)).

Examples H is a 3-by-3 eigenvalue test matrix:

H = [-149 -50 -154
537 180 546

 -27 -9 -25]

Its Schur form is

schur(H)

ans =
1.0000 7.1119 815.8706

0 2.0000 -55.0236
0 0 3.0000

'complex' T is triangular and is complex if A has complex eigenvalues.

'real' T has the real eigenvalues on the diagonal and the complex
eigenvalues in 2-by-2 blocks on the diagonal. 'real' is the
default.

schur

2-277

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal. The fact
that the off-diagonal elements are so large indicates that this matrix has poorly
conditioned eigenvalues; small changes in the matrix elements produce
relatively large changes in its eigenvalues.

Algorithm schur uses LAPACK routines to compute the Schur form of a matrix:

See Also eig, hess, qz, rsf2csf

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide (http://www.netlib.org/lapack/lug/
lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

Matrix A Routine

Real symmetric DSYTRD, DSTEQR
DSYTRD, DORGTR, DSTEQR (with output U)

Real nonsymmetric DGEHRD, DHSEQR
DGEHRD, DORGHR, DHSEQR (with output U)

Complex Hermitian ZHETRD, ZSTEQR
ZHETRD, ZUNGTR, ZSTEQR (with output U)

Non-Hermitian ZGEHRD, ZHSEQR
ZGEHRD, ZUNGHR, ZHSEQR (with output U)

script

2-278

2scriptPurpose Script M-files

Description A script file is an external file that contains a sequence of MATLAB
statements. By typing the filename, subsequent MATLAB input is obtained
from the file. Script files have a filename extension of .m and are often called
M-files.

Scripts are the simplest kind of M-file. They are useful for automating blocks
of MATLAB commands, such as computations you have to perform repeatedly
from the command line. Scripts can operate on existing data in the workspace,
or they can create new data on which to operate. Although scripts do not return
output arguments, any variables that they create remain in the workspace so
you can use them in further computations. In addition, scripts can produce
graphical output using commands like plot.

Scripts can contain any series of MATLAB statements. They require no
declarations or begin/end delimiters.

Like any M-file, scripts can contain comments. Any text following a percent
sign (%) on a given line is comment text. Comments can appear on lines by
themselves, or you can append them to the end of any executable line.

See Also echo, function, type

sec, sech

2-279

2sec, sechPurpose Secant and hyperbolic secant

Syntax Y = sec(X)
Y = sech(X)

Description The sec and sech commands operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = sec(X) returns an array the same size as X containing the secant of the
elements of X.

Y = sech(X) returns an array the same size as X containing the hyperbolic
secant of the elements of X.

Examples Graph the secant over the domains and and
the hyperbolic secant over the domain

x1 = -pi/2+0.01:0.01:pi/2-0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2))
x = -2*pi:0.01:2*pi; plot(x,sech(x))

π– 2⁄ x π 2⁄< < π 2⁄ x 3π 2⁄ ,< <
2π– x 2π.≤ ≤

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y=
se

ch
(x

)

-2 -1 0 1 2 3 4 5
-150

-100

-50

0

50

100

150

x1 x2

y=
se

c(
x)

sec, sech

2-280

The expression sec(pi/2) does not evaluate as infinite but as the reciprocal of
the floating-point accuracy eps, because pi is a floating-point approximation to
the exact value of .

Algorithm sec and sech use these algorithms.

See Also asec, asech

π

z()sec 1
z()cos

-----------------=

z()sech 1
z()cosh

--------------------=

selectmoveresize

2-281

2selectmoveresizePurpose Select, move, resize, or copy axes and uicontrol graphics objects

Syntax A = selectmoveresize;
set(h,'ButtonDownFcn','selectmoveresize')

Description selectmoveresize is useful as the callback routine for axes and uicontrol
button down functions. When executed, it selects the object and allows you to
move, resize, and copy it.

For example, this statement sets the ButtonDownFcn of the current axes to
selectmoveresize:

set(gca,'ButtonDownFcn','selectmoveresize')

A = selectmoveresize returns a structure array containing:

• A.Type: a string containing the action type, which can be Select, Move,
Resize, or Copy.

• A.Handles: a list of the selected handles or for a Copy an m-by-2 matrix
containing the original handles in the first column and the new handles in
the second column.

See Also The ButtonDownFcn of axes and uicontrol graphics objects

semilogx, semilogy

2-282

2semilogx, semilogyPurpose Semi-logarithmic plots

Syntax semilogx(Y)
semilogx(X1,Y1,...)
semilogx(X1,Y1,LineSpec,...)
semilogx(...,'PropertyName',PropertyValue,...)
h = semilogx(...)

semilogy(...)
h = semilogy(...)

Description semilogx and semilogy plot data as logarithmic scales for the x- and y-axis,
respectively. logarithmic

semilogx(Y) creates a plot using a base 10 logarithmic scale for the x-axis and
a linear scale for the y-axis. It plots the columns of Y versus their index if Y
contains real numbers. semilogx(Y) is equivalent to semilogx(real(Y),
imag(Y)) if Y contains complex numbers. semilogx ignores the imaginary
component in all other uses of this function.

semilogx(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn is a matrix,
semilogx plots the vector argument versus the rows or columns of the matrix,
depending on whether the vector’s row or column dimension matches the
matrix.

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples. LineSpec determines line style, marker symbol, and color of the plotted
lines.

semilogx(...,'PropertyName',PropertyValue,...) sets property values for
all line graphics objects created by semilogx.

semilogy(...) creates a plot using a base 10 logarithmic scale for the y-axis
and a linear scale for the x-axis.

h = semilogx(...) and h = semilogy(...) return a vector of handles to line
graphics objects, one handle per line.

semilogx, semilogy

2-283

Remarks If you do not specify a color when plotting more than one line, semilogx and
semilogy automatically cycle through the colors and line styles in the order
specified by the current axes ColorOrder and LineStyleOrder properties.

You can mix Xn,Yn pairs with Xn,Yn,LineSpec triples; for example,

semilogx(X1,Y1,X2,Y2,LineSpec,X3,Y3)

Examples Create a simple semilogy plot.

x = 0:.1:10;
semilogy(x,10.^x)

See Also line, LineSpec, loglog, plot

0 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

send (activex)

2-284

2send (activex)Purpose Returns a list of events that the control can trigger.

Syntax send (a)

Arguments a
Activex object returned by actxcontrol.

Description Displays a list of events that controls send.

Example send (a)

Change = Void Change ()
Click = Void Click ()
DblClick = Void DblClick ()
KeyDown = Void KeyDown (Variant(Pointer), Short)
KeyPress = Void KeyPress (Variant(Pointer), Short)
KeyUp = Void KeyUp (Variant(Pointer), Short)
MouseDown = Void MouseDown (Short, Short, Vendor-Defined,

Vendor-Defined)
MouseMove = Void MouseMove (Short, Short, Vendor-Defined,

Vendor-Defined)
MouseUp = Void MouseUp (Short, Short, Vendor-Defined,

Vendor-Defined)

serial

2-285

2serialPurpose Create a serial port object

Syntax obj = serial('port')
obj = serial('port','PropertyName',PropertyValue,...)

Arguments

Description obj = serial('port') creates a serial port object associated with the serial
port specified by port. If port does not exist, or if it is in use, you will not be
able to connect the serial port object to the device.

obj = serial('port','PropertyName',PropertyValue,...) creates a serial
port object with the specified property names and property values. If an invalid
property name or property value is specified, an error is returned and the serial
port object is not created.

Remarks When you create a serial port object, these property values are automatically
configured:

• The Type property is given by serial.

• The Name property is given by concatenating Serial with the port specified
in the serial function.

• The Port property is given by the port specified in the serial function.

You can specify the property names and property values using any format
supported by the set function. For example, you can use property name/
property value cell array pairs. Additionally, you can specify property names
without regard to case, and you can make use of property name completion. For
example, the following commands are all valid.

s = serial('COM1','BaudRate',4800);
s = serial('COM1','baudrate',4800);
s = serial('COM1','BAUD',4800);

'port' The serial port name.

'PropertyName' A serial port property name.

PropertyValue A property value supported by PropertyName.

obj The serial port object.

serial

2-286

Refer to “Configuring Property Values” for a list of serial port object properties
that you can use with serial.

Before you can communicate with the device, it must be connected to obj with
the fopen function. A connected serial port object has a Status property value
of open. An error is returned if you attempt a read or write operation while the
object is not connected to the device. You can connect only one serial port object
to a given serial port.

Example This example creates the serial port object s1 associated with the serial port
COM1.

s1 = serial('COM1');

The Type, Name, and Port properties are automatically configured.

get(s1,{'Type','Name','Port'})
ans =
 'serial' 'Serial-COM1' 'COM1'

To specify properties during object creation

s2 = serial('COM2','BaudRate',1200,'DataBits',7);

See Also Functions
fclose, fopen

Properties
Name, Port, Status, Type

serialbreak

2-287

2serialbreakPurpose Send a break to the device connected to the serial port

Syntax serialbreak(obj)
serialbreak(obj,time)

Arguments

Description serialbreak(obj) sends a break of 10 milliseconds to the device connected to
obj.

serialbreak(obj,time) sends a break to the device with a duration, in
milliseconds, specified by time. Note that the duration of the break may be
inaccurate under some operating systems.

Remarks For some devices, the break signal provides a way to clear the hardware buffer.

Before you can send a break to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to send a break while obj is not
connected to the device.

serialbreak is a synchronous function, and blocks the command line until
execution is complete.

If you issue serialbreak while data is being asynchronously written, an error
is returned. In this case, you must call the stopasync function or wait for the
write operation to complete.

See Also Functions
fopen, stopasync

Properties
Status

obj A serial port object.

time The duration of the break, in milliseconds.

set

2-288

2setPurpose Set object properties

Syntax set(H,'PropertyName',PropertyValue,...)
set(H,a)
set(H,pn,pv...)
set(H,pn,<m-by-n cell array>)
a= set(h)
a= set(0,'Factory')
a= set(0,'FactoryObjectTypePropertyName')
a= set(h,'Default')
a= set(h,'DefaultObjectTypePropertyName')
<cell array> = set(h,'PropertyName')

Description set(H,'PropertyName',PropertyValue,...) sets the named properties to
the specified values on the object(s) identified by H. H can be a vector of handles,
in which case set sets the properties’ values for all the objects.

set(H,a) sets the named properties to the specified values on the object(s)
identified by H. a is a structure array whose field names are the object property
names and whose field values are the values of the corresponding properties.

set(H,pn,pv,...) sets the named properties specified in the cell array pn to
the corresponding value in the cell array pv for all objects identified in H.

set(H,pn,<m-by-n cell array>) sets n property values on each of m graphics
objects, where m = length(H) and n is equal to the number of property names
contained in the cell array pn. This allows you to set a given group of properties
to different values on each object.

a = set(h) returns the user-settable properties and possible values for the
object identified by h. a is a structure array whose field names are the object’s
property names and whose field values are the possible values of the
corresponding properties. If you do not specify an output argument, MATLAB
displays the information on the screen. h must be scalar.

a = set(0,'Factory') returns the properties whose defaults are user
settable for all objects and lists possible values for each property. a is a
structure array whose field names are the object’s property names and whose

set

2-289

field values are the possible values of the corresponding properties. If you do
not specify an output argument, MATLAB displays the information on the
screen.

a = set(0,'FactoryObjectTypePropertyName') returns the possible values
of the named property for the specified object type, if the values are strings.
The argument FactoryObjectTypePropertyName is the word Factory
concatenated with the object type (e.g., axes) and the property name (e.g.,
CameraPosition).

a = set(h,'Default') returns the names of properties having default values
set on the object identified by h. set also returns the possible values if they are
strings. h must be scalar.

a = set(h,'DefaultObjectTypePropertyName') returns the possible values
of the named property for the specified object type, if the values are strings.
The argument DefaultObjectTypePropertyName is the word Default
concatenated with the object type (e.g., axes) and the property name (e.g.,
CameraPosition). For example, DefaultAxesCameraPosition. h must be
scalar.

pv = set(h,'PropertyName') returns the possible values for the named
property. If the possible values are strings, set returns each in a cell of the cell
array, pv. For other properties, set returns an empty cell array. If you do not
specify an output argument, MATLAB displays the information on the screen.
h must be scalar.

Remarks You can use any combination of property name/property value pairs, structure
arrays, and cell arrays in one call to set.

Examples Set the Color property of the current axes to blue.

set(gca,'Color','b')

Change all the lines in a plot to black.

plot(peaks)
set(findobj('Type','line'),'Color','k')

You can define a group of properties in a structure to better organize your code.
For example, these statements define a structure called active, which

set

2-290

contains a set of property definitions used for the uicontrol objects in a
particular figure. When this figure becomes the current figure, MATLAB
changes colors and enables the controls.

active.BackgroundColor = [.7 .7 .7];
active.Enable = 'on';
active.ForegroundColor = [0 0 0];

if gcf == control_fig_handle
set(findobj(control_fig_handle,'Type','uicontrol'),active)

end

You can use cell arrays to set properties to different values on each object. For
example, these statements define a cell array to set three properties,

PropName(1) = {'BackgroundColor'};
PropName(2) = {'Enable'};
PropName(3) = {'ForegroundColor'};

These statements define a cell array containing three values for each of three
objects (i.e., a 3-by-3 cell array).

PropVal(1,1) = {[.5 .5 .5]};
PropVal(1,2) = {'off'};
PropVal(1,3) = {[.9 .9 .9]};

PropVal(2,1) = {[1 0 0]};
PropVal(2,2) = {'on'};
PropVal(2,3) = {[1 1 1]};

PropVal(3,1) = {[.7 .7 .7]};
PropVal(3,2) = {'on'};
PropVal(3,3) = {[0 0 0]};

Now pass the arguments to set,

set(H,PropName,PropVal)

where length(H) = 3 and each element is the handle to a uicontrol.

See Also findobj, gca, gcf, gco, gcbo, get

set (activex)

2-291

2set (activex)Purpose Set an interface property to a specific value.

Syntax set (a [, 'propertyname' [, value [, arg1, arg2, …]]])

Arguments a
An activex object handle previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string that is the name of the property to be set.

value
The value to which the interface property is set.

arg1, …, argn
Arguments, if any, required by the property. Properties are similar to methods
in that it is possible for a property to have arguments.

Returns There is no return value from set.

Description Set an interface property to a specific value. See “Converting Data” in
MATLAB External Interfaces for information on how MATLAB converts
workspace matrices to ActiveX data types.

Example f = figure ('pos', [100 200 200 200]);
% Create the control to fill the figure.
a = actxcontrol ('MWSAMP.MwsampCtrl.1', [0 0 200 200], f)
set (a, 'Label', 'Click to fire event');
set (a, 'Radius', 40);
invoke (a, 'Redraw');

set (serial)

2-292

2set (serial)Purpose Configure or display serial port object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Arguments

Description set(obj) displays all configurable properties values for obj. If a property has
a finite list of possible string values, then these values are also displayed.

props = set(obj) returns all configurable properties and their possible
values for obj to props. props is a structure whose field names are the property
names of obj, and whose values are cell arrays of possible property values. If
the property does not have a finite set of possible values, then the cell array is
empty.

set(obj,'PropertyName') displays the valid values for PropertyName if it
possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values or an
empty cell array if PropertyName does not have a finite list of possible values.

obj A serial port object or an array of serial port objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.

PV A cell array of property values.

S A structure with property names and property values.

props A structure array whose field names are the property
names for obj, or cell array of possible values.

set (serial)

2-293

set(obj,'PropertyName',PropertyValue,...) configures multiple property
values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of strings
PN to the corresponding values in the cell array PV. PN must be a vector. PV can
be m-by-n where m is equal to the number of serial port objects in obj and n is
equal to the length of PN.

set(obj,S) configures the named properties to the specified values for obj. S
is a structure whose field names are serial port object properties, and whose
field values are the values of the corresponding properties.

Remarks Refer to “Configuring Property Values” for a list of serial port object properties
that you can configure with set.

You can use any combination of property name/property value pairs,
structures, and cell arrays in one call to set. Additionally, you can specify a
property name without regard to case, and you can make use of property name
completion. For example, if s is a serial port object, then the following
commands are all valid.

set(s,'BaudRate')
set(s,'baudrate')
set(s,'BAUD')

If you use the help command to display help for set, then you need to supply
the pathname shown below.

help serial/set

Examples This example illustrates some of the ways you can use set to configure or
return property values for the serial port object s.

s = serial('COM1');
set(s,'BaudRate',9600,'Parity','even')
set(s,{'StopBits','RecordName'},{2,'sydney.txt'})
set(s,'Parity')
[{none} | odd | even | mark | space]

See Also Functions
get

setappdata

2-294

2setappdataPurpose Set application-defined data

Syntax setappdata(h,name,value)

Description setappdata(h,name,value) sets application-defined data for the object with
handle h. The application-defined data, which is created if it does not already
exist, is assigned a name and a value. value can be type of data.

See Also getappdata, isappdata, rmappdata

setdiff

2-295

2setdiffPurpose Return the set difference of two vectors

Syntax c = setdiff(A,B)
c = setdiff(A,B,'rows')
[c,i] = setdiff(...)

Description c = setdiff(A,B) returns the values in A that are not in B. The resulting
vector is sorted is ascending order. In set theoretic terms, c = A - B. A and B
can be cell arrays of strings.

c = setdiff(A,B,'rows') when A and B are matrices with the same number
of columns returns the rows from A that are not in B.

[c,i] = setdiff(...) also returns an index vector index such that c = a(i)
or c = a(i,:).

Examples A = magic(5);
B = magic(4);
[c,i] = setdiff(A(:),B(:));
c' = 17 18 19 20 21 22 23 24 25
i' = 1 10 14 18 19 23 2 6 15

See Also intersect, ismember, setxor, union, unique

setfield

2-296

2setfieldPurpose Set field of structure array

Syntax s = setfield(s,'field',v)
s = setfield(s,{i,j},'field',{k},v)

Description s = setfield(s,'field',v), where s is a 1-by-1 structure, sets the contents
of the specified field to the value v. This is equivalent to the syntax
s.field = v.

s = setfield(s,{i,j},'field',{k},v) sets the contents of the specified
field to the value v. This is equivalent to the syntax s(i,j).field(k) = v. All
subscripts must be passed as cell arrays—that is, they must be enclosed in
curly braces (similar to{i,j} and {k} above). Pass field references as strings.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1;

You can change the name field of mystr(2,1) using

mystr = setfield(mystr,{2,1},'name','ted');
mystr(2,1).name

ans =

ted

The following example sets fields of a structure using setfield with variable
and quoted field names and additional subscripting arguments.

class = 5; student = 'John_Doe';
grades_Doe = [85,89,76,93,85,91,68,84,95,73];
grades = [];

grades = setfield(grades,{class}, student, 'Math',{10,21:30},...
 grades_Doe);

You can check the outcome using the standard structure syntax.

setfield

2-297

grades(class).John_Doe.Math(10,21:30)

ans =

 85 89 76 93 85 91 68 84 95 73

See Also getfield, rmfield, fieldnames

setstr

2-298

2setstrPurpose Set string flag

Description This MATLAB 4 function has been renamed char in MATLAB 5.

setxor

2-299

2setxorPurpose Set exclusive-or of two vectors

Syntax c = setxor(A,B)
c = setxor(A,B,'rows')
[c,ia,ib] = setxor(...)

Description c = setxor(A,B) returns the values that are not in the intersection of A and
B. The resulting vector is sorted. A and B can be cell arrays of strings.

c = setxor(A,B,'rows') when A and B are matrices with the same number
of columns returns the rows that are not in the intersection of A and B.

[c,ia,ib] = setxor(...) also returns index vectors ia and ib such that c is
a sorted combination of the elements c = a(ia) and c = b(ib) or, for row
combinations, c = a(ia,:) and c = b(ib,:).

Examples a = [-1 0 1 Inf -Inf NaN];
b = [-2 pi 0 Inf];
c = setxor(a,b)

c =
 -Inf -2.0000 -1.0000 1.0000 3.1416 NaN

See Also intersect, ismember, setdiff, union, unique

shading

2-300

2shadingPurpose Set color shading properties

Syntax shading flat
shading faceted
shading interp

Description The shading function controls the color shading of surface and patch graphics
objects.

shading flat each mesh line segment and face has a constant color
determined by the color value at the end point of the segment or the corner of
the face that has the smallest index or indices.

shading faceted flat shading with superimposed black mesh lines. This is the
default shading mode.

shading interp varies the color in each line segment and face by interpolating
the colormap index or true color value across the line or face.

Examples Compare a flat, faceted, and interpolated-shaded sphere.

subplot(3,1,1)
sphere(16)
axis square
shading flat
title('Flat Shading')

subplot(3,1,2)
sphere(16)
axis square
shading faceted
title('Faceted Shading')

subplot(3,1,3)
sphere(16)
axis square
shading interp
title('Interpolated Shading')

shading

2-301

Algorithm shading sets the EdgeColor and FaceColor properties of all surface and patch
graphics objects in the current axes. shading sets the appropriate values,
depending on whether the surface or patch objects represent meshes or solid
surfaces.

shading

2-302

See Also fill, fill3, hidden, mesh, patch, pcolor, surf
The EdgeColor and FaceColor properties for surface and patch graphics
objects.

shiftdim

2-303

2shiftdimPurpose Shift dimensions

Syntax B = shiftdim(X,n)
[B,nshifts] = shiftdim(X)

Description B = shiftdim(X,n) shifts the dimensions of X by n. When n is positive,
shiftdim shifts the dimensions to the left and wraps the n leading dimensions
to the end. When n is negative, shiftdim shifts the dimensions to the right and
pads with singletons.

[B,nshifts] = shiftdim(X) returns the array B with the same number of
elements as X but with any leading singleton dimensions removed. A singleton
dimension is any dimension for which size(A,dim) = 1. nshifts is the number
of dimensions that are removed.

If X is a scalar, shiftdim has no effect.

Examples The shiftdim command is handy for creating functions that, like sum or diff,
work along the first nonsingleton dimension.

a = rand(1,1,3,1,2);
[b,n] = shiftdim(a); % b is 3-by-1-by-2 and n is 2.
c = shiftdim(b,-n); % c == a.
d = shiftdim(a,3); % d is 1-by-2-by-1-by-1-by-3.

See Also reshape, squeeze

shrinkfaces

2-304

2shrinkfacesPurpose Reduce the size of patch faces

Syntax shrinkfaces(p,sf)
nfv = shrinkfaces(p,sf)
nfv = shrinkfaces(fv,sf)
shrinkfaces(p), shrinkfaces(fv)
nfv = shrinkfaces(f,v,sf)
[nf,nv] = shrinkfaces(...)

Description shrinkfaces(p,sf) shrinks the area of the faces in patch p to shrink factor sf.
A shrink factor of 0.6 shrinks each face to 60% of its original area. If the patch
contains shared vertices, MATLAB creates nonshared vertices before
performing the face-area reduction.

nfv = shrinkfaces(p,sf) returns the face and vertex data in the struct nfv,
but does not set the Faces and Vertices properties of patch p.

nfv = shrinkfaces(fv,sf) uses the face and vertex data from the struct fv.

shrinkfaces(p) and shrinkfaces(fv) (without specifying a shrink factor)
assume a shrink factor of 0.3.

nfv = shrinkfaces(f,v,sf) uses the face and vertex data from the arrays f
and v.

[nf,nv] = shrinkfaces(...) returns the face and vertex data in two separate
arrays instead of a struct.

Examples This example uses the flow data set, which represents the speed profile of a
submerged jet within a infinite tank (type help flow for more information).
Two isosurfaces provide a before and after view of the effects of shrinking the
face size.

• First reducevolume samples the flow data at every other point and then
isosurface generates the faces and vertices data.

• The patch command accepts the face/vertex struct and draws the first (p1)
isosurface.

• Use the daspect, view, and axis commands to set up the view and then add
a title.

shrinkfaces

2-305

• The shrinkfaces command modifies the face/vertex data and passes it
directly to patch.

[x,y,z,v] = flow;
[x,y,z,v] = reducevolume(x,y,z,v,2);
fv = isosurface(x,y,z,v,-3);
p1 = patch(fv);
set(p1,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
title('Original')

figure
p2 = patch(shrinkfaces(fv,.3));
set(p2,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight

shrinkfaces

2-306

title('After Shrinking')

2

4

6

8

−3
−2

−1
0

1
2

3
−3

−2

−1

0

1

2

3

Original

shrinkfaces

2-307

See Also isocaps, isonormals, isosurface, reducepatch, reducevolume, smooth3,
subvolume

2

4

6

8

−2
−1

0
1

2

−2

−1

0

1

2

After Shrinking

sign

2-308

2signPurpose Signum function

Syntax Y = sign(X)

Description Y = sign(X) returns an array Y the same size as X, where each element of Y is:

• 1 if the corresponding element of X is greater than zero

• 0 if the corresponding element of X equals zero

• -1 if the corresponding element of X is less than zero

For nonzero complex X, sign(X) = X./abs(X).

See Also abs, conj, imag, real

sin, sinh

2-309

2sin, sinhPurpose Sine and hyperbolic sine

Syntax Y = sin(X)
Y = sinh(X)

Description The sin and sinh commands operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = sin(X) returns the circular sine of the elements of X.

Y = sinh(X) returns the hyperbolic sine of the elements of X.

Examples Graph the sine function over the domain and the hyperbolic sine
function over the domain

x = -pi:0.01:pi; plot(x,sin(x))
x = -5:0.01:5; plot(x,sinh(x))

The expression sin(pi) is not exactly zero, but rather a value the size of the
floating-point accuracy eps, because pi is only a floating-point approximation
to the exact value of .

π– x π,≤ ≤
5– x 5.≤ ≤

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y=
si

n(
x)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-80

-60

-40

-20

0

20

40

60

80

x

y=
si

nh
(x

)

π

sin, sinh

2-310

Algorithm sin and sinh use these algorithms.

See Also asin, asinh

x iy+()sin x() y()cossin i x() y()sincos+=

z()sin eiz e iz––
2i

----------------------=

z()sinh ez e z––
2

-------------------=

single

2-311

2singlePurpose Convert to single-precision

Syntax B = single(A)

Description B = single(A) converts the matrix A to single-precision, returning that value
in B. A can be any numeric object (such as a double). If A is already
single-precision, single has no effect. Single-precision quantities require less
storage than double-precision quantities, but have less precision and a smaller
range.

The single class is primarily meant to be used to store single-precision values.
Hence most operations that manipulate arrays without changing their
elements are defined. Examples are reshape, size, the relational operators,
subscripted assignment and subscripted reference. No math operations are
defined for single objects.

You can define your own methods for the single class by placing the
appropriately named method in an @single directory within a directory on
your path.

Examples a = magic(4);
b = single(a);

whos
 Name Size Bytes Class

 a 4x4 128 double array
 b 4x4 64 single array

See Also double

size

2-312

2sizePurpose Array dimensions

Syntax d = size(X)
[m,n] = size(X)
m = size(X,dim)
[d1,d2,d3,...,dn] = size(X)

Description d = size(X) returns the sizes of each dimension of array X in a vector d with
ndims(X) elements.

[m,n] = size(X) returns the size of matrix X in variables m and n.

m = size(X,dim) returns the size of the dimension of X specified by scalar dim.

[d1,d2,d3,...,dn] = size(X) returns the sizes of the various dimensions of
array X in separate variables.

If the number of output arguments n does not equal ndims(X), then

Examples The size of the second dimension of rand(2,3,4) is 3.

m = size(rand(2,3,4),2)

m =
 3

Here the size is output as a single vector.

d = size(rand(2,3,4))

d =
 2 3 4

Here the size of each dimension is assigned to a separate variable.

If n > ndims(X) Ones are returned in the “extra” variables dndims(X)+1
through dn.

If n < ndims(X) The final variable dn contains the product of the sizes of
all the “remaining” dimensions of X, that is, dimensions
n+1 through ndims(X).

size

2-313

[m,n,p] = size(rand(2,3,4))
m =
 2

n =
 3

p =
 4

If X = ones(3,4,5), then

[d1,d2,d3] = size(X)

d1 = d2 = d3 =
 3 4 5

but when the number of output variables is less than ndims(X):

[d1,d2] = size(X)

d1 = d2 =
 3 20

The “extra” dimensions are collapsed into a single product.

If n > ndims(X), the “extra” variables all represent singleton dimensions:

[d1,d2,d3,d4,d5,d6] = size(X)

d1 = d2 = d3 =
 3 4 5

d4 = d5 = d6 =
 1 1 1

See Also exist, length, whos

size (serial)

2-314

2size (serial)Purpose Size of serial port object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,...,mn] = size(obj)
m = size(obj,dim)

Arguments

Description d = size(obj) returns the two-element row vector d containing the number of
rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in separate
output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions
of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj,1) returns the number of rows.

See Also Functions
length

obj A serial port object or an array of serial port objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the dimension
specified by dim.

n The number of columns in obj.

m1,m2,...,m
n

The length of the first N dimensions of obj.

slice

2-315

2slicePurpose Volumetric slice plot

Syntax slice(V,sx,sy,sz)
slice(X,Y,Z,V,sx,sy,sz)
slice(V,XI,YI,ZI)
slice(X,Y,Z,V,XI,YI,ZI)
slice(...,'method')
h = slice(...)

Description slice displays orthogonal slice planes through volumetric data.

slice(V,sx,sy,sz) draws slices along the x, y, z directions in the volume V at
the points in the vectors sx, sy, and sz. V is an m-by-n-by-p volume array
containing data values at the default location X = 1:n, Y = 1:m, Z = 1:p. Each
element in the vectors sx, sy, and sz defines a slice plane in the x-, y-, or z-axis
direction.

slice(X,Y,Z,V,sx,sy,sz) draws slices of the volume V. X, Y, and Z are
three-dimensional arrays specifying the coordinates for V. X, Y, and Z must be
monotonic and orthogonally spaced (as if produced by the function meshgrid).
The color at each point is determined by 3-D interpolation into the volume V.

slice(V,XI,YI,ZI) draws data in the volume V for the slices defined by XI, YI,
and ZI. XI, YI, and ZI are matrices that define a surface, and the volume is
evaluated at the surface points. XI, YI, and ZI must all be the same size.

slice(X,Y,Z,V,XI,YI,ZI) draws slices through the volume V along the
surface defined by the arrays XI, YI, ZI.

slice(...,'method') specifies the interpolation method. 'method' is
'linear', 'cubic', or 'nearest'.

• linear specifies trilinear interpolation (the default).

• cubic specifies tricubic interpolation.

• nearest specifies nearest neighbor interpolation.

h = slice(...) returns a vector of handles to surface graphics objects.

slice

2-316

Remarks The color drawn at each point is determined by interpolation into the volume V.

Examples Visualize the function

over the range –2 ≤x ≤2, –2 ≤y ≤2, – 2 ≤z ≤2:

[x,y,z] = meshgrid(−2:.2:2,−2:.25:2,−2:.16:2);
v = x.*exp(−x.^2−y.^2−z.^2);
xslice = [−1.2,.8,2]; yslice = 2; zslice = [−2,0];
slice(x,y,z,v,xslice,yslice,zslice)
colormap hsv

Slicing At Arbitrary Angles
You can also create slices that are oriented in arbitrary planes. To do this,

v xe x2 y2– z2––()=

−2
−1

0
1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x axis sliced at -1.2, .8, and 2

y axis sliced
at 2

z axis sliced at
0 and -2

slice

2-317

• Create a slice surface in the domain of the volume (surf, linspace).

• Orient this surface with respect the the axes (rotate).

• Get the XData, YData, and ZData of the surface (get).

• Use this data to draw the slice plane within the volume.

For example, these statements slice the volume in the first example with a
rotated plane. Placing these commands within a for loop “passes” the plane
through the volume along the z-axis.

for i = −2:.5:2
hsp = surf(linspace(−2,2,20),linspace(−2,2,20),zeros(20)+i);
rotate(hsp,[1,−1,1],30)
xd = get(hsp,’XData’);
yd = get(hsp,’YData’);
zd = get(hsp,’ZData’);
delete(hsp)
slice(x,y,z,v,[−2,2],2,-2) % Draw some volume boundaries
hold on
slice(x,y,z,v,xd,yd,zd)
hold off
axis tight
view(−5,10)
drawnow

end

The following picture illustrates three positions of the same slice surface as it
passes through the volume.

slice

2-318

Slicing with a Nonplanar Surface
You can slice the volume with any surface. This example probes the volume
created in the previous example by passing a spherical slice surface through
the volume.

[xsp,ysp,zsp] = sphere;
slice(x,y,z,v,[-2,2],2,-2) % Draw some volume boundaries

for i = -3:.2:3
hsp = surface(xsp+i,ysp,zsp);
rotate(hsp,[1 0 0],90)
xd = get(hsp,’XData’);
yd = get(hsp,’YData’);
zd = get(hsp,’ZData’);
delete(hsp)
hold on
hslicer = slice(x,y,z,v,xd,yd,zd);
axis tight

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5−2
0

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

slice

2-319

xlim([-3,3])
view(-10,35)
drawnow
delete(hslicer)
hold off

end

The following picture illustrates three positions of the spherical slice surface as
it passes through the volume.

See Also interp3, meshgrid

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

smooth3

2-320

2smooth3Purpose Smooth 3-D data

Syntax W = smooth3(V)
W = smooth3(V,'filter')
W = smooth3(V,'filter',size)
W = smooth3(V,'filter',size,sd)

Description W = smooth3(V) smooths the input data V and returns the smoothed data in W.

W = smooth3(V,'filter') filter determines the convolution kernel and can
be the strings gaussian or box (default).

W = smooth3(V,'filter',size) sets the size of the convolution kernel (default
is [3 3 3]). If size is scalar, then size is interpreted as [size, size, size].

W = smooth3(V,'filter',size,sd) sets an attribute of the convolution
kernel. When filter is gaussian, sd is the standard deviation (default is .65).

Examples This example smooths some random 3-D data and then creates an isosurface
with end caps.

data = rand(10,10,10);
data = smooth3(data,'box',5);
p1 = patch(isosurface(data,.5), ...
 'FaceColor','blue','EdgeColor','none');
p2 = patch(isocaps(data,.5), ...
 'FaceColor','interp','EdgeColor','none');
isonormals(data,p1)
view(3); axis vis3d tight
camlight; lighting phong

See Also isocaps, isonormals, isosurface, patch, reducepatch, reducevolume,
subvolume

sort

2-321

2sortPurpose Sort elements in ascending order

Syntax B = sort(A)
B = sort(A,dim)
[B,INDEX] = sort(A,...)

Description B = sort(A) sorts the elements along different dimensions of an array, and
arranges those elements in ascending order.

Real, complex, and string elements are permitted. For elements of A with
identical values, the order of these elements is preserved in the sorted list.
When A is complex, the elements are sorted by magnitude, i.e., abs(A), and
where magnitudes are equal, further sorted by phase angle, i.e., angle(A), on
the interval . If A includes any NaN elements, sort places these at the
end.

B = sort(A,dim) sorts the elements along the dimension of A specified by a
scalar dim. If dim is a vector, sort works iteratively on the specified
dimensions. Thus, sort(A,[1 2]) is equivalent to sort(sort(A,2),1).

[B,IX] = sort(A,...) also returns an array of indices IX, where
size(IX) == size(A). If A is a vector, B = A(IX). If A is an m-by-n matrix, then
each column of IX is a permutation vector of the corresponding column of A,
such that

for j = 1:n
 B(:,j) = A(IX(:,j),j);
end

If A is a ... sort(A) ...

Vector Sorts the elements of A in ascending order.

Matrix Sorts each column of A in ascending order.

Multidimensional
array

Sorts A along the first non-singleton dimension, and
returns an array of sorted vectors.

Cell array of
strings

Sorts the strings in ASCII dictionary order.

π π,–[]

sort

2-322

If A has repeated elements of equal value, the returned indices preserve the
original ordering.

Examples This example sorts a matrix A in each dimension, and then sorts it a third time,
requesting an array of indices for the sorted result.

A = [3 7 5
 0 4 2];

sort(A,1)

ans =
 0 4 2
 3 7 5

sort(A,2)

ans =
 3 5 7
 0 2 4

[B,IX] = sort(A,2)

B =
 3 5 7
 0 2 4

IX =
 1 3 2
 1 3 2

See Also max, mean, median, min, sortrows

sortrows

2-323

2sortrowsPurpose Sort rows in ascending order

Syntax B = sortrows(A)
B = sortrows(A,column)
[B,index] = sortrows(A)

Description B = sortrows(A) sorts the rows of A as a group in ascending order. Argument
A must be either a matrix or a column vector.

For strings, this is the familiar dictionary sort. When A is complex, the
elements are sorted by magnitude, and, where magnitudes are equal, further
sorted by phase angle on the interval .

B = sortrows(A,column) sorts the matrix based on the columns specified in
the vector column. For example, sortrows(A,[2 3]) sorts the rows of A by the
second column, and where these are equal, further sorts by the third column.

[B,index] = sortrows(A) also returns an index vector index.

If A is a column vector, then B = A(index).

If A is an m-by-n matrix, then B = A(index,:).

Examples Given the 5-by-5 string matrix,

A = ['one ';'two ';'three';'four ';'five '];

The commands B = sortrows(A) and C = sortrows(A,1) yield

B = C =
 five four
 four five
 one one
 three two
 two three

See Also sort

π π,–[]

sound

2-324

2soundPurpose Convert vector into sound

Syntax sound(y,Fs)
sound(y)
sound(y,Fs,bits)

Description sound(y,Fs), sends the signal in vector y (with sample frequency Fs) to the
speaker on PC and most UNIX platforms. Values in y are assumed to be in the
range . Values outside that range are clipped. Stereo sound is
played on platforms that support it when y is an n-by-2 matrix.

sound(y) plays the sound at the default sample rate or 8192 Hz.

sound(y,Fs,bits) plays the sound using bits number of bits/sample, if
possible. Most platforms support bits = 8 or bits = 16.

Remarks MATLAB supports all Windows-compatible sound devices.

See Also auread, auwrite, soundsc, wavread, wavwrite

1.0 y 1.0≤ ≤–

soundsc

2-325

2soundscPurpose Scale data and play as sound

Syntax soundsc(y,Fs)
soundsc(y)
soundsc(y,Fs,bits)
soundsc(y,...,slim)

Description soundsc(y,Fs) sends the signal in vector y (with sample frequency Fs) to the
speaker on PC and most UNIX platforms. The signal y is scaled to the range

before it is played, resulting in a sound that is played as loud as
possible without clipping.

soundsc(y) plays the sound at the default sample rate or 8192 Hz.

soundsc(y,Fs,bits) plays the sound using bits number of bits/sample if
possible. Most platforms support bits = 8 or bits = 16.

soundsc(y,...,slim) where slim = [slow shigh] maps the values in y
between slow and shigh to the full sound range. The default value is
slim = [min(y) max(y)].

Remarks MATLAB supports all Windows-compatible sound devices.

See Also auread, auwrite, sound, wavread, wavwrite

1.0 y 1.0≤ ≤–

spalloc

2-326

2spallocPurpose Allocate space for sparse matrix

Syntax S = spalloc(m,n,nzmax)

Description S = spalloc(m,n,nzmax) creates an all zero sparse matrix S of size m-by-n
with room to hold nzmax nonzeros. The matrix can then be generated column
by column without requiring repeated storage allocation as the number of
nonzeros grows.

spalloc(m,n,nzmax) is shorthand for

sparse([],[],[],m,n,nzmax)

Examples To generate efficiently a sparse matrix that has an average of at most three
nonzero elements per column

S = spalloc(n,n,3*n);
for j = 1:n

S(:,j) = [zeros(n-3,1)' round(rand(3,1))']';
end

sparse

2-327

2sparsePurpose Create sparse matrix

Syntax S = sparse(A)
S = sparse(i,j,s,m,n,nzmax)
S = sparse(i,j,s,m,n)
S = sparse(i,j,s)
S = sparse(m,n)

Description The sparse function generates matrices in MATLAB’s sparse storage
organization.

S = sparse(A) converts a full matrix to sparse form by squeezing out any zero
elements. If S is already sparse, sparse(S) returns S.

S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an m-by-n
sparse matrix such that S(i(k),j(k)) = s(k), with space allocated for nzmax
nonzeros. Vectors i, j, and s are all the same length. Any elements of s that
are zero are ignored, along with the corresponding values of i and j. Any
elements of s that have duplicate values of i and j are added together.

Note If any value in i or j is larger than the maximum integer size, 2^31-1,
then the sparse matrix cannot be constructed.

To simplify this six-argument call, you can pass scalars for the argument s and
one of the arguments i or j—in which case they are expanded so that i, j, and
s all have the same length.

S = sparse(i,j,s,m,n) uses nzmax = length(s).

S = sparse(i,j,s) uses m = max(i) and n = max(j). The maxima are
computed before any zeros in s are removed, so one of the rows of [i j s]
might be [m n 0].

S = sparse(m,n) abbreviates sparse([],[],[],m,n,0). This generates the
ultimate sparse matrix, an m-by-n all zero matrix.

sparse

2-328

Remarks All of MATLAB’s built-in arithmetic, logical, and indexing operations can be
applied to sparse matrices, or to mixtures of sparse and full matrices.
Operations on sparse matrices return sparse matrices and operations on full
matrices return full matrices.

In most cases, operations on mixtures of sparse and full matrices return full
matrices. The exceptions include situations where the result of a mixed
operation is structurally sparse, for example, A.*S is at least as sparse as S.

Examples S = sparse(1:n,1:n,1) generates a sparse representation of the n-by-n
identity matrix. The same S results from S = sparse(eye(n,n)), but this
would also temporarily generate a full n-by-n matrix with most of its elements
equal to zero.

B = sparse(10000,10000,pi) is probably not very useful, but is legal and
works; it sets up a 10000-by-10000matrix with only one nonzero element. Don’t
try full(B); it requires 800 megabytes of storage.

This dissects and then reassembles a sparse matrix:

[i,j,s] = find(S);
[m,n] = size(S);
S = sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero entries:

[i,j,s] = find(S);
S = sparse(i,j,s);

See Also diag, find, full, nnz, nonzeros, nzmax, spones, sprandn, sprandsym, spy

The sparfun directory

spaugment

2-329

2spaugmentPurpose Form least squares augmented system

Syntax S = spaugment(A,c)

Description S = spaugment(A,c) creates the sparse, square, symmetric indefinite matrix
S = [c*I A; A' 0]. The matrix S is related to the least squares problem

min norm(b - A*x)

by

r = b - A*x
S * [r/c; x] = [b; 0]

The optimum value of the residual scaling factor c, involves min(svd(A)) and
norm(r), which are usually too expensive to compute.

S = spaugment(A) without a specified value of c, uses max(max(abs(A)))/
1000.

Note In previous versions of MATLAB, the augmented matrix was used by
sparse linear equation solvers, \ and /, for nonsquare problems. Now,
MATLAB performs a least squares solve using the qr factorization of A
instead.

See Also spparms

spconvert

2-330

2spconvertPurpose Import matrix from sparse matrix external format

Syntax S = spconvert(D)

Description spconvert is used to create sparse matrices from a simple sparse format easily
produced by non-MATLAB sparse programs. spconvert is the second step in
the process:

1 Load an ASCII data file containing [i,j,v] or [i,j,re,im] as rows into a
MATLAB variable.

2 Convert that variable into a MATLAB sparse matrix.

S = spconvert(D) converts a matrix D with rows containing [i,j,s] or
[i,j,r,s] to the corresponding sparse matrix. D must have an nnz or nnz+1
row and three or four columns. Three elements per row generate a real matrix
and four elements per row generate a complex matrix. A row of the form
[m n 0] or [m n 0 0] anywhere in D can be used to specify size(S). If D is
already sparse, no conversion is done, so spconvert can be used after D is
loaded from either a MAT-file or an ASCII file.

Examples Suppose the ASCII file uphill.dat contains

1 1 1.000000000000000
1 2 0.500000000000000
2 2 0.333333333333333
1 3 0.333333333333333
2 3 0.250000000000000
3 3 0.200000000000000
1 4 0.250000000000000
2 4 0.200000000000000
3 4 0.166666666666667
4 4 0.142857142857143
4 4 0.000000000000000

Then the statements

load uphill.dat
H = spconvert(uphill)

spconvert

2-331

H =
 (1,1) 1.0000
 (1,2) 0.5000
 (2,2) 0.3333
 (1,3) 0.3333
 (2,3) 0.2500
 (3,3) 0.2000
 (1,4) 0.2500
 (2,4) 0.2000
 (3,4) 0.1667
 (4,4) 0.1429

recreate sparse(triu(hilb(4))), possibly with roundoff errors. In this case,
the last line of the input file is not necessary because the earlier lines already
specify that the matrix is at least 4-by-4.

spdiags

2-332

2spdiagsPurpose Extract and create sparse band and diagonal matrices

Syntax [B,d] = spdiags(A)
B = spdiags(A,d)
A = spdiags(B,d,A)
A = spdiags(B,d,m,n)

Description The spdiags function generalizes the function diag. Four different operations,
distinguished by the number of input arguments, are possible:

[B,d] = spdiags(A) extracts all nonzero diagonals from the m-by-n matrix A.
B is a min(m,n)-by-p matrix whose columns are the p nonzero diagonals of A. d
is a vector of length p whose integer components specify the diagonals in A.

B = spdiags(A,d) extracts the diagonals specified by d.

A = spdiags(B,d,A) replaces the diagonals specified by d with the columns of
B. The output is sparse.

A = spdiags(B,d,m,n) creates an m-by-n sparse matrix by taking the columns
of B and placing them along the diagonals specified by d.

Note If a column of B is longer than the diagonal it’s replacing, spdiags takes
elements of super-diagonals from the lower part of the column of B, and
elements of sub-diagonals from the upper part of the column of B.

Arguments The spdiags function deals with three matrices, in various combinations, as
both input and output.

A An m-by-n matrix, usually (but not necessarily) sparse, with its nonzero
or specified elements located on p diagonals.

B A min(m,n)-by-p matrix, usually (but not necessarily) full, whose
columns are the diagonals of A.

d A vector of length p whose integer components specify the diagonals in A.

spdiags

2-333

Roughly, A, B, and d are related by

for k = 1:p
B(:,k) = diag(A,d(k))

end

Some elements of B, corresponding to positions outside of A, are not defined by
these loops. They are not referenced when B is input and are set to zero when
B is output.

Examples Example 1. This example generates a sparse tridiagonal representation of the
classic second difference operator on n points.

e = ones(n,1);
A = spdiags([e -2*e e], -1:1, n, n)

Turn it into Wilkinson’s test matrix (see gallery):

A = spdiags(abs(-(n-1)/2:(n-1)/2)',0,A)

Finally, recover the three diagonals:

B = spdiags(A)

Example 2. The second example is not square.

A = [11 0 13 0
0 22 0 24
0 0 33 0

41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74]

Here m = 7, n = 4, and p = 3.

The statement [B,d] = spdiags(A) produces d = [-3 0 2]' and

B = [41 11 0
52 22 0
63 33 13
74 44 24]

spdiags

2-334

Conversely, with the above B and d, the expression spdiags(B,d,7,4)
reproduces the original A.

Example 3. This example shows how spdiags creates the diagonals when the
columns of B are longer than the diagonals they are replacing.

B = repmat((1:6)',[1 7])

B =

 1 1 1 1 1 1 1
 2 2 2 2 2 2 2
 3 3 3 3 3 3 3
 4 4 4 4 4 4 4
 5 5 5 5 5 5 5
 6 6 6 6 6 6 6

d = [-4 -2 -1 0 3 4 5];
A = spdiags(B,d,6,6);
full(A)

ans =

 1 0 0 4 5 6
 1 2 0 0 5 6
 1 2 3 0 0 6
 0 2 3 4 0 0
 1 0 3 4 5 0
 0 2 0 4 5 6

See Also diag

speye

2-335

2speyePurpose Sparse identity matrix

Syntax S = speye(m,n)
S = speye(n)

Description S = speye(m,n) forms an m-by-n sparse matrix with 1s on the main diagonal.

S = speye(n) abbreviates speye(n,n).

Examples I = speye(1000) forms the sparse representation of the 1000-by-1000 identity
matrix, which requires only about 16 kilobytes of storage. This is the same final
result as I = sparse(eye(1000,1000)), but the latter requires eight
megabytes for temporary storage for the full representation.

See Also spalloc, spones, spdiags, sprand, sprandn

spfun

2-336

2spfunPurpose Apply function to nonzero sparse matrix elements

Syntax f = spfun(fun,S)

Description The spfun function selectively applies a function to only the nonzero elements
of a sparse matrix S, preserving the sparsity pattern of the original matrix
(except for underflow or if fun returns zero for some nonzero elements of S).

f = spfun(fun,S) evaluates fun(S) on the nonzero elements of S. You can
specify fun as a function handle or as an inline object.

Remarks Functions that operate element-by-element, like those in the elfun directory,
are the most appropriate functions to use with spfun.

Examples Given the 4-by-4 sparse diagonal matrix

S = spdiags([1:4]',0,4,4)

S =
 (1,1) 1
 (2,2) 2
 (3,3) 3
 (4,4) 4

Because fun returns nonzero values for all nonzero element of S,
f = spfun(@exp,S) has the same sparsity pattern as S.

f =
 (1,1) 2.7183
 (2,2) 7.3891
 (3,3) 20.0855
 (4,4) 54.5982

whereas exp(S) has 1s where S has 0s.

full(exp(S))

ans =
 2.7183 1.0000 1.0000 1.0000
 1.0000 7.3891 1.0000 1.0000

spfun

2-337

 1.0000 1.0000 20.0855 1.0000
 1.0000 1.0000 1.0000 54.5982

See Also function handle (@), inline

sph2cart

2-338

2sph2cartPurpose Transform spherical coordinates to Cartesian

Syntax [x,y,z] = sph2cart(THETA,PHI,R)

Description [x,y,z] = sph2cart(THETA,PHI,R) transforms the corresponding elements
of spherical coordinate arrays to Cartesian, or xyz, coordinates. THETA, PHI, and
R must all be the same size. THETA and PHI are angular displacements in
radians from the positive x-axis and from the x-y plane, respectively.

Algorithm The mapping from spherical coordinates to three-dimensional Cartesian
coordinates is

See Also cart2pol, cart2sph, pol2cart

x = r .* cos(phi) .* cos(theta)
y = r .* cos(phi) .* sin(theta)

z = r .* sin(phi)

Z

Y

X

theta

P

phi

r

sphere

2-339

2spherePurpose Generate sphere

Syntax sphere
sphere(n)
[X,Y,Z] = sphere(...)

Description The sphere function generates the x-, y-, and z-coordinates of a unit sphere for
use with surf and mesh.

sphere generates a sphere consisting of 20-by-20 faces.

sphere(n) draws a surf plot of an n-by-n sphere in the current figure.

[X,Y,Z] = sphere(n) returns the coordinates of a sphere in three matrices
that are (n+1)–by–(n+1) in size. You draw the sphere with surf(X,Y,Z) or
mesh(X,Y,Z).

Examples Generate and plot a sphere.

sphere
axis equal

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

sphere

2-340

See Also cylinder, axis

spinmap

2-341

2spinmapPurpose Spin colormap

Syntax spinmap
spinmap(t)
spinmap(t,inc)
spinmap('inf')

Description The spinmap function shifts the colormap RGB values by some incremental
value. For example, if the increment equals 1, color 1 becomes color 2, color 2
becomes color 3, etc.

spinmap cyclically rotates the colormap for approximately five seconds using
an incremental value of 2.

spinmap(t) rotates the colormap for approximately 10*t seconds. The amount
of time specified by t depends on your hardware configuration (e.g., if you are
running MATLAB over a network).

spinmap(t,inc) rotates the colormap for approximately 10*t seconds and
specifies an increment inc by which the colormap shifts. When inc is 1, the
rotation appears smoother than the default (i.e., 2). Increments greater than 2
are less smooth than the default. A negative increment (e.g., –2) rotates the
colormap in a negative direction.

spinmap('inf') rotates the colormap for an infinite amount of time. To break
the loop, press Ctrl-C.

See Also colormap

spline

2-342

2splinePurpose Cubic spline data interpolation

Syntax yy = spline(x,y,xx)
pp = spline(x,y)

Description yy = spline(x,y,xx) uses cubic spline interpolation to find yy, the values of
the underlying function y at the points in the vector xx. The vector x specifies
the points at which the data y is given. If y is a matrix, then the data is taken
to be vector-valued and interpolation is performed for each column of y and yy
is length(xx)-by-size(y,2).

pp = spline(x,y) returns the piecewise polynomial form of the cubic spline
interpolant for later use with ppval and the spline utility unmkpp.

Ordinarily, the not-a-knot end conditions are used. However, if y contains two
more values than x has entries, then the first and last value in y are used as
the endslopes for the cubic spline. Namely:

f(x) = y(:,2:end-1), df(min(x)) = y(:,1), df(max(x)) = y(:,end)

Examples Example 1. This generates a sine curve, then samples the spline over a finer
mesh.

x = 0:10;
y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)

spline

2-343

Example 2. This illustrates the use of clamped or complete spline interpolation
where end slopes are prescribed. Zero slopes at the ends of an interpolant to the
values of a certain distribution are enforced.

x = -4:4;
y = [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];
cs = spline(x,[0 y 0]);
xx = linspace(-4,4,101);
plot(x,y,'o',xx,ppval(cs,xx),'-');

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

spline

2-344

Example 3. The two vectors

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633];

represent the census years from 1900 to 1990 and the corresponding United
States population in millions of people. The expression

spline(t,p,2000)

uses the cubic spline to extrapolate and predict the population in the year 2000.
The result is

ans =
270.6060

Example 4. The statements

x = pi*[0:.5:2];
y = [0 1 0 -1 0 1 0;
 1 0 1 0 -1 0 1];
pp = spline(x,y);

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

spline

2-345

yy = ppval(pp, linspace(0,2*pi,101));
plot(yy(1,:),yy(2,:),'-b',y(1,2:5),y(2,2:5),'or'), axis equal

generate the plot of a circle, with the five data points y(:,2),...,y(:,6)
marked with o's. Note that this y contains two more values (i.e., two more
columns) than does x, hence y(:,1) and y(:,end) are used as endslopes.

 Algorithm A tridiagonal linear system (with, possibly, several right sides) is being solved
for the information needed to describe the coefficients of the various cubic
polynomials which make up the interpolating spline. spline uses the functions
ppval, mkpp, and unmkpp. These routines form a small suite of functions for
working with piecewise polynomials. For access to more advanced features, see
the M-file help for these functions and the Spline Toolbox.

See Also interp1, ppval, mkpp, unmkpp

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

spones

2-346

2sponesPurpose Replace nonzero sparse matrix elements with ones

Syntax R = spones(S)

Description R = spones(S) generates a matrix R with the same sparsity structure as S, but
with 1’s in the nonzero positions.

Examples c = sum(spones(S)) is the number of nonzeros in each column.

r = sum(spones(S'))' is the number of nonzeros in each row.

sum(c) and sum(r) are equal, and are equal to nnz(S).

See Also nnz, spalloc, spfun

spparms

2-347

2spparmsPurpose Set parameters for sparse matrix routines

Syntax spparms('key',value)
spparms
values = spparms
[keys,values] = spparms
spparms(values)
value = spparms('key')
spparms('default')
spparms('tight')

Description spparms('key',value) sets one or more of the tunable parameters used in the
sparse linear equation operators, \ and /, and the minimum degree orderings,
colmmd and symmmd. In ordinary use, you should never need to deal with this
function.

The meanings of the key parameters are

'spumoni' Sparse Monitor flag.
0 produces no diagnostic output, the default.
1 produces information about choice of algorithm based on
matrix structure, and about storage allocation.
2 also produces very detailed information about the minimum
degree algorithms.

'thr_rel',
'thr_abs'

Minimum degree threshold is thr_rel*mindegree+thr_abs.

'exact_d' Nonzero to use exact degrees in minimum degree. Zero to use
approximate degrees.

'supernd' If positive, minimum degree amalgamates the supernodes
every supernd stages.

'rreduce' If positive, minimum degree does row reduction every rreduce
stages.

'wh_frac' Rows with density > wh_frac are ignored in colmmd.

spparms

2-348

spparms, by itself, prints a description of the current settings.

values = spparms returns a vector whose components give the current
settings.

[keys,values] = spparms returns that vector, and also returns a character
matrix whose rows are the keywords for the parameters.

spparms(values), with no output argument, sets all the parameters to the
values specified by the argument vector.

value = spparms('key') returns the current setting of one parameter.

spparms('default') sets all the parameters to their default settings.

spparms('tight') sets the minimum degree ordering parameters to their
tight settings, which can lead to orderings with less fill-in, but which make the
ordering functions themselves use more execution time.

The key parameters for default and tight settings are

'autommd' Nonzero to use minimum degree orderings with \ and /.

'aug_rel',
'aug_abs'

Residual scaling parameter for augmented equations is
aug_rel*max(max(abs(A))) + aug_abs.

For example, aug_rel = 0, aug_abs = 1 puts an unscaled
identity matrix in the (1,1) block of the augmented matrix.

Keyword Default Tight

values(1) 'spumoni' 0.0

values(2) 'thr_rel' 1.1 1.0

values(3) 'thr_abs' 1.0 0.0

values(4) 'exact_d' 0.0 1.0

values(5) 'supernd' 3.0 1.0

values(6) 'rreduce' 3.0 1.0

spparms

2-349

See Also \, colamd, colmmd, symamd, symmmd

References [1] Gilbert, John R., Cleve Moler and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications, Vol. 13, 1992, pp. 333-356.

values(7) 'wh_frac' 0.5 0.5

values(8) 'autommd' 1.0

values(9) 'aug_rel' 0.001

values(10) 'aug_abs' 0.0

Keyword Default Tight

sprand

2-350

2sprandPurpose Sparse uniformly distributed random matrix

Syntax R = sprand(S)
R = sprand(m,n,density)
R = sprand(m,n,density,rc)

Description R = sprand(S) has the same sparsity structure as S, but uniformly distributed
random entries.

R = sprand(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n uniformly distributed nonzero entries
(0 <= density <= 1).

R = sprand(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc as its first
lr singular values, all others are zero. In this case, R is generated by random
plane rotations applied to a diagonal matrix with the given singular values. It
has a great deal of topological and algebraic structure.

See Also sprandn, sprandsym

sprandn

2-351

2sprandnPurpose Sparse normally distributed random matrix

Syntax R = sprandn(S)
R = sprandn(m,n,density)
R = sprandn(m,n,density,rc)

Description R = sprandn(S) has the same sparsity structure as S, but normally
distributed random entries with mean 0 and variance 1.

R = sprandn(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n normally distributed nonzero entries
(0 <= density <= 1).

R = sprandn(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc as its first
lr singular values, all others are zero. In this case, R is generated by random
plane rotations applied to a diagonal matrix with the given singular values. It
has a great deal of topological and algebraic structure.

See Also sprand, sprandsym

sprandsym

2-352

2sprandsymPurpose Sparse symmetric random matrix

Syntax R = sprandsym(S)
R = sprandsym(n,density)
R = sprandsym(n,density,rc)
R = sprandsym(n,density,rc,kind)

Description R = sprandsym(S) returns a symmetric random matrix whose lower triangle
and diagonal have the same structure as S. Its elements are normally
distributed, with mean 0 and variance 1.

R = sprandsym(n,density) returns a symmetric random, n-by-n, sparse
matrix with approximately density*n*n nonzeros; each entry is the sum of one
or more normally distributed random samples, and (0 <= density <= 1).

R = sprandsym(n,density,rc) returns a matrix with a reciprocal condition
number equal to rc. The distribution of entries is nonuniform; it is roughly
symmetric about 0; all are in .

If rc is a vector of length n, then R has eigenvalues rc. Thus, if rc is a positive
(nonnegative) vector then R is a positive definite matrix. In either case, R is
generated by random Jacobi rotations applied to a diagonal matrix with the
given eigenvalues or condition number. It has a great deal of topological and
algebraic structure.

R = sprandsym(n,density,rc,kind) returns a positive definite matrix.
Argument kind can be:

• 1 to generate R by random Jacobi rotation of a positive definite diagonal
matrix. R has the desired condition number exactly.

• 2 to generate an R that is a shifted sum of outer products. R has the desired
condition number only approximately, but has less structure.

• 3 to generate an R that has the same structure as the matrix S and
approximate condition number 1/rc. density is ignored.

See Also sprand, sprandn

1 1,–[]

sprank

2-353

2sprankPurpose Structural rank

Syntax r = sprank(A)

Description r = sprank(A) is the structural rank of the sparse matrix A. Also known as
maximum traversal, maximum assignment, and size of a maximum matching
in the bipartite graph of A.

Always sprank(A) >= rank(full(A)), and in exact arithmetic
sprank(A) == rank(full(sprandn(A))) with probability one.

Examples A = [1 0 2 0
2 0 4 0];

A = sparse(A);

sprank(A)

ans =
 2

rank(full(A))

ans =
 1

See Also dmperm

sprintf

2-354

2sprintfPurpose Write formatted data to a string

Syntax [s,errmsg] = sprintf(format,A,...)

Description [s,errmsg] = sprintf(format,A,...) formats the data in matrix A (and in
any additional matrix arguments) under control of the specified format string,
and returns it in the MATLAB string variable s. The sprintf function returns
an error message string errmsg if an error occurred. errmsg is an empty matrix
if no error occurred.

sprintf is the same as fprintf except that it returns the data in a MATLAB
string variable rather than writing it to a file.

Format String
The format argument is a string containing C language conversion
specifications. A conversion specification controls the notation, alignment,
significant digits, field width, and other aspects of output format. The format
string can contain escape characters to represent non-printing characters such
as newline characters and tabs.

Conversion specifications begin with the % character and contain these optional
and required elements:

• Flags (optional)

• Width and precision fields (optional)

• A subtype specifier (optional)

• Conversion character (required)

You specify these elements in the following order:

%–12.5eStart of conversion specif ication

Field width

Conversion character

Flags

Precision

sprintf

2-355

Flags
You can control the alignment of the output using any of these optional flags.

Field Width and Precision Specifications
You can control the width and precision of the output by including these
options in the format string.

Conversion Characters
Conversion characters specify the notation of the output.

Character Description Example

A minus sign (–) Left-justifies the converted argument in
its field.

%–5.2d

A plus sign (+) Always prints a sign character (+ or –). %+5.2d

Zero (0) Pad with zeros rather than spaces. %05.2d

Character Description Example

Field width A digit string specifying the minimum
number of digits to be printed.

%6f

Precision A digit string including a period (.)
specifying the number of digits to be
printed to the right of the decimal point.

%6.2f

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in
3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

sprintf

2-356

The following tables describe the nonalphanumeric characters found in format
specification strings.

Escape Characters

This table lists the escape character sequences you use to specify non-printing
characters in a format specification.

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2].
Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

Specifier Description

sprintf

2-357

Remarks The sprintf function behaves like its ANSI C language namesake with these
exceptions and extensions.

• If you use sprintf to convert a MATLAB double into an integer, and the
double contains a value that cannot be represented as an integer (for
example, it contains a fraction), MATLAB ignores the specified conversion
and outputs the value in exponential format. To successfully perform this
conversion, use the fix, floor, ceil, or round functions to change the value
in the double into a value that can be represented as an integer before
passing it to sprintf.

• The following, non-standard subtype specifiers are supported for the
conversion characters %o, %u, %x, and %X.

For example, to print a double value in hexadecimal use the format '%bx'

• The sprintf function is vectorized for nonscalar arguments. The function
recycles the format string through the elements of A (columnwise) until all
the elements are used up. The function then continues in a similar manner
through any additional matrix arguments.

• If %s is used to print part of a nonscalar double argument, the following
behavior occurs:

a. Successive values are printed as long as they are integers and in the range
of a valid character. The first invalid character terminates the printing for

\'' or ''

(two single
quotes)

Single quotation mark

%% Percent character

Character Description

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned
integer.

sprintf

2-358

this %s specifier and is used for a later specifier. For example, pi terminates
the string below and is printed using %f format.
 Str = [65 66 67 pi];
 sprintf('%s %f', Str)
 ans =
 ABC 3.141593

b. If the first value to print is not a valid character, then just that value is
printed for this %s specifier using an e conversion as a warning to the user.
For example, pi is formatted by %s below in exponential notation, and 65,
though representing a valid character, is formatted as fixed-point (%f).
 Str = [pi 65 66 67];
 sprintf('%s %f %s', Str)
 ans =
 3.141593e+000 65.000000 BC

c. One exception is zero which is a valid character. If zero is found first, %s
prints nothing and the value is skipped. If zero is found after at least one
valid character, it terminates the printing for this %s specifier and is used for
a later specifier.

• sprintf prints negative zero and exponents differently on some platforms,
as shown in the following tables.

Negative Zero Printed with %e, %E, %f, %g, or %G

Display of Negative Zero

Platform %e or %E %f %g or %G

PC 0.000000e+000 0.000000 0

SGI 0.000000e+00 0.000000 0

HP700 -0.000000e+00 -0.000000 0

Others -0.000000e+00 -0.000000 -0

sprintf

2-359

You can resolve this difference in exponents by post-processing the results of
sprintf. For example, to make the PC output look like that of UNIX, use

a = sprintf('%e', 12345.678);
if ispc, a = strrep(a, 'e+0', 'e+'); end

Examples

See Also int2str, num2str, sscanf

References [1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.

Exponents Printed with %e, %E, %g, or %G

Platform Minimum Digits in Exponent Example

PC 3 1.23e+004

UNIX 2 1.23e+04

Command Result

sprintf('%0.5g',(1+sqrt(5))/2) 1.618

sprintf('%0.5g',1/eps) 4.5036e+15

sprintf('%15.5f',1/eps) 4503599627370496.00000

sprintf('%d',round(pi)) 3

sprintf('%s','hello') hello

sprintf('The array is %dx%d.',2,3) The array is 2x3

sprintf('\n') Line termination character
on all platforms

spy

2-360

2spyPurpose Visualize sparsity pattern

Syntax spy(S)
spy(S,markersize)
spy(S,'LineSpec')
spy(S,'LineSpec',markersize)

Description spy(S) plots the sparsity pattern of any matrix S.

spy(S,markersize), where markersize is an integer, plots the sparsity
pattern using markers of the specified point size.

spy(S,'LineSpec'), where LineSpec is a string, uses the specified plot marker
type and color.

spy(S,'LineSpec',markersize) uses the specified type, color, and size for the
plot markers.

S is usually a sparse matrix, but full matrices are acceptable, in which case the
locations of the nonzero elements are plotted.

Note spy replaces format +, which takes much more space to display
essentially the same information.

Examples This example plots the 60-by-60 sparse adjacency matrix of the connectivity
graph of the Buckminster Fuller geodesic dome. This matrix also represents
the soccer ball and the carbon-60 molecule.

B = bucky;
spy(B)

spy

2-361

See Also find, gplot, LineSpec, symamd, symmmd, symrcm

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 180

sqrt

2-362

2sqrtPurpose Square root

Syntax B = sqrt(X)

Description B = sqrt(X) returns the square root of each element of the array X. For the
elements of X that are negative or complex, sqrt(X) produces complex results.

Remarks See sqrtm for the matrix square root.

Examples sqrt((-2:2)')
ans =

0 + 1.4142i
0 + 1.0000i
0

1.0000
1.4142

See Also sqrtm

sqrtm

2-363

2sqrtmPurpose Matrix square root

Syntax X = sqrtm(A)
[X,resnorm] = sqrtm(A)
[X,alpha,condest] = sqrtm(A)

Description X = sqrtm(A) is the principal square root of the matrix A, i.e. X*X = A.

X is the unique square root for which every eigenvalue has nonnegative real
part. If A has any eigenvalues with negative real parts then a complex result
is produced. If A is singular then A may not have a square root. A warning is
printed if exact singularity is detected.

[X, resnorm] = sqrtm(A) does not print any warning, and returns the
residual, norm(A-X^2,'fro')/norm(A,'fro').

[X, alpha, condest] = sqrtm(A) returns a stability factor alpha and an
estimate condest of the matrix square root condition number of X. The
residual norm(A-X^2,'fro')/norm(A,'fro') is bounded approximately by
n*alpha*eps and the Frobenius norm relative error in X is bounded
approximately by n*alpha*condest*eps, where n = max(size(A)).

Remarks If X is real, symmetric and positive definite, or complex, Hermitian and positive
definite, then so is the computed matrix square root.

Some matrices, like X = [0 1; 0 0], do not have any square roots, real or
complex, and sqrtm cannot be expected to produce one.

Examples Example 1. A matrix representation of the fourth difference operator is

X =
5 -4 1 0 0

-4 6 -4 1 0
1 -4 6 -4 1
0 1 -4 6 -4
0 0 1 -4 5

This matrix is symmetric and positive definite. Its unique positive definite
square root, Y = sqrtm(X), is a representation of the second difference
operator.

sqrtm

2-364

Y =
2 -1 -0 -0 -0

-1 2 -1 0 -0
 0 -1 2 -1 0
-0 0 -1 2 -1
-0 -0 -0 -1 2

Example 2. The matrix

X =
7 10

15 22

has four square roots. Two of them are

Y1 =
1.5667 1.7408
2.6112 4.1779

and

Y2 =
1 2
3 4

The other two are -Y1 and -Y2. All four can be obtained from the eigenvalues
and vectors of X.

[V,D] = eig(X);
D =

0.1386 0
0 28.8614

The four square roots of the diagonal matrix D result from the four choices of
sign in

S =
0.3723 0

0 5.3723

All four Ys are of the form

Y = V*S/V

sqrtm

2-365

The sqrtm function chooses the two plus signs and produces Y1, even though Y2
is more natural because its entries are integers.

See Also expm, funm, logm

squeeze

2-366

2squeezePurpose Remove singleton dimensions

Syntax B = squeeze(A)

Description B = squeeze(A) returns an array B with the same elements as A, but with all
singleton dimensions removed. A singleton dimension is any dimension for
which size(A,dim) = 1.

Examples Consider the 2-by-1-by-3 array Y = rand(2,1,3). This array has a singleton
column dimension — that is, there’s only one column per page.

Y =

Y(:,:,1) = Y(:,:,2) =
 0.5194 0.0346
 0.8310 0.0535

Y(:,:,3) =
 0.5297
 0.6711

The command Z = squeeze(Y) yields a 2-by-3 matrix:

Z =
 0.5194 0.0346 0.5297
 0.8310 0.0535 0.6711

See Also reshape, shiftdim

sscanf

2-367

2sscanfPurpose Read string under format control

Syntax A = sscanf(s,format)
A = sscanf(s,format,size)
[A,count,errmsg,nextindex] = sscanf(...)

Description A = sscanf(s,format) reads data from the MATLAB string variable s,
converts it according to the specified format string, and returns it in matrix A.
format is a string specifying the format of the data to be read. See “Remarks”
for details. sscanf is the same as fscanf except that it reads the data from a
MATLAB string variable rather than reading it from a file.

A = sscanf(s,format,size) reads the amount of data specified by size and
converts it according to the specified format string. size is an argument that
determines how much data is read. Valid options are

If the matrix A results from using character conversions only and size is not of
the form [M,N], a row vector is returned.

sscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

[A,count,errmsg,nextindex] = sscanf(...) reads data from the MATLAB
string variable s, converts it according to the specified format string, and
returns it in matrix A. count is an optional output argument that returns the
number of elements successfully read. errmsg is an optional output argument
that returns an error message string if an error occurred or an empty matrix if
an error did not occur. nextindex is an optional output argument specifying
one more than the number of characters scanned in s.

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector
containing the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the
matrix in column order. n can be Inf, but not m.

sscanf

2-368

Remarks When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be
matched and involve the character %, optional width fields, and conversion
characters, organized as shown below:

Add one or more of these characters between the % and the conversion
character.

Valid conversion characters are as shown.

An asterisk (*) Skip over the matched value if the value is matched
but not stored in the output matrix.

A digit string Maximum field width.

A letter The size of the receiving object; for example, h for short
as in %hd for a short integer, or l for long as in %ld for a
long integer or %lg for a double floating-point number.

%c Sequence of characters; number specified by field width

%d Decimal numbers

%e, %f, %g Floating-point numbers

%i Signed integer

%o Signed octal integer

%s A series of non-whitespace characters

}%–12.5e

Initial % character
Field width
and precision

Conversion
characterFlag

sscanf

2-369

If %s is used, an element read may use several MATLAB matrix elements, each
holding one character. Use %c to read space characters, or %s to skip all white
space.

Mixing character and numeric conversion specifications cause the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.

Examples The statements

s = '2.7183 3.1416';
A = sscanf(s,'%f')

create a two-element vector containing poor approximations to e and pi.

See Also eval, sprintf, textread

%u Signed decimal integer

%x Signed hexadecimal integer

[...] Sequence of characters (scanlist)

stairs

2-370

2stairsPurpose Stairstep plot

Syntax stairs(Y)
stairs(X,Y)
stairs(...,LineSpec)
[xb,yb] = stairs(Y)
[xb,yb] = stairs(X,Y)

Description Stairstep plots are useful for drawing time-history plots of digitally sampled
data systems.

stairs(Y) draws a stairstep plot of the elements of Y. When Y is a vector, the
x-axis scale ranges from 1 to size(Y). When Y is a matrix, the x-axis scale
ranges from 1 to the number of rows in Y.

stairs(X,Y) plots X versus the columns of Y. X and Y are vectors of the same
size or matrices of the same size. Additionally, X can be a row or a column
vector, and Y a matrix with length(X) rows.

stairs(...,LineSpec) specifies a line style, marker symbol, and color for the
plot (see LineSpec for more information).

[xb,yb] = stairs(Y) and [xb,yb] = stairs(x,Y) do not draw graphs, but
return vectors xb and yb such that plot(xb,yb) plots the stairstep graph.

Examples Create a stairstep plot of a sine wave.

x = 0:.25:10;
stairs(x,sin(x))

stairs

2-371

See Also bar, hist

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

startup

2-372

2startupPurpose MATLAB startup M-file for user-defined options

Description startup automatically executes the master M-file matlabrc.m and, if it exists,
startup.m, when MATLAB starts. On multiuser or networked systems,
matlabrc.m is reserved for use by the system manager. The file matlabrc.m
invokes the file startup.m if it exists on MATLAB’s search path.

You can create a startup.m file in your own MATLAB directory. The file can
include physical constants, handle graphics defaults, engineering conversion
factors, or anything else you want predefined in your workspace.

There are other way to predefine aspects of MATLAB. See “Startup Options”
and “Setting Preferences” in Using MATLAB.

Algorithm Only matlabrc.m is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements

if exist('startup')==2
startup

end

that invoke startup.m. You can extend this process to create additional
startup M-files, if required.

See Also matlabrc, quit

std

2-373

2stdPurpose Standard deviation

Syntax s = std(X)
s = std(X,flag)
s = std(X,flag,dim)

Definition There are two common textbook definitions for the standard deviation s of a
data vector X.

where

and is the number of elements in the sample. The two forms of the equation
differ only in versus in the divisor.

Description s = std(X), where X is a vector, returns the standard deviation using (1)
above. If X is a random sample of data from a normal distribution, is the best
unbiased estimate of its variance.

If X is a matrix, std(X) returns a row vector containing the standard deviation
of the elements of each column of X. If X is a multidimensional array, std(X) is
the standard deviation of th elements along the first nonsingleton dimension
of X.

s = std(X,flag) for flag = 0, is the same as std(X). For flag = 1, std(X,1)
returns the standard deviation using (2) above, producing the second moment
of the sample about its mean.

(1) s 1
n 1–
------------- xi x–()2

i 1=

n

∑ 
 
  1

2

=

(2) s 1
n
--- xi x–()2

i 1=

n

∑ 
 
  1

2

=

x 1
n
--- xi

i 1=

n

∑=

n
n 1– n

s2

std

2-374

s = std(X,flag,dim) computes the standard deviations along the dimension
of X specified by scalar dim.

Examples For matrix X

X =
1 5 9

 7 15 22

s = std(X,0,1)
s =

4.2426 7.0711 9.1924

s = std(X,0,2)
s =

4.000
7.5056

See Also corrcoef, cov, mean, median

stem

2-375

2stemPurpose Plot discrete sequence data

Syntax stem(Y)
stem(X,Y)
stem(...,'fill')
stem(...,LineSpec)
h = stem(...)

Description A two-dimensional stem plot displays data as lines extending from the x-axis.
A circle (the default) or other marker whose y-position represents the data
value terminates each stem.

stem(Y) plots the data sequence Y as stems that extend from equally spaced
and automatically generated values along the x-axis. When Y is a matrix, stem
plots all elements in a row against the same x value.

stem(X,Y) plots X versus the columns of Y. X and Y are vectors or matrices of
the same size. Additionally, X can be a row or a column vector and Y a matrix
with length(X) rows.

stem(...,'fill') specifies whether to color the circle at the end of the stem.

stem(...,LineSpec) specifies the line style, marker symbol, and color for the
stem plot. See LineSpec for more information.

h = stem(...) returns handles to line graphics objects.

Examples Create a stem plot of 10 random numbers.

y = linspace(0,2,10);
stem(exp(-y),'fill','–.')

stem

2-376

axis ([0 11 0 1])

See Also bar, plot, stairs, stem3

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

stem3

2-377

2stem3Purpose Plot three-dimensional discrete sequence data

Syntax stem3(Z)
stem3(X,Y,Z)
stem3(...,'fill')
stem3(...,LineSpec)
h = stem3(...)

Description Three-dimensional stem plots display lines extending from the xy-plane. A
circle (the default) or other marker symbol whose z-position represents the
data value terminates each stem.

stem3(Z) plots the data sequence Z as stems that extend from the xy-plane.
x and y are generated automatically. When Z is a row vector, stem3 plots all
elements at equally spaced x values against the same y value. When Z is a
column vector, stem3 plots all elements at equally spaced y values against the
same x value.

stem3(X,Y,Z) plots the data sequence Z at values specified by X and Y. X, Y, and
Z must all be vectors or matrices of the same size.

stem3(...,'fill') specifies whether to color the interior of the circle at the
end of the stem.

stem3(...,LineSpec) specifies the line style, marker symbol, and color for the
stems. See LineSpec for more information.

h = stem3(...) returns handles to line graphics objects.

Examples Create a three-dimensional stem plot to visualize a function of two variables.

X = linspace(0,1,10);
Y = X./2;
Z = sin(X) + cos(Y);
stem3(X,Y,Z,'fill')
view(-25,30)

stem3

2-378

:

See Also bar, plot, stairs, stem

0
0.2

0.4
0.6

0.8
1

0
0.1

0.2
0.3

0.4
0.5

0

0.5

1

1.5

2

stopasync

2-379

2stopasyncPurpose Stop asynchronous read and write operations

Syntax stopasync(obj)

Arguments

Description stopasync(obj) stops any asynchronous read or write operation that is in
progress for obj.

Remarks You can write data asynchronously using the fprintf or fwrite functions. You
can read data asynchronously using the readasync function, or by configuring
the ReadAsyncMode property to continuous. In-progress asynchronous
operations are indicated by the TransferStatus property.

If obj is an array of serial port objects and one of the objects cannot be stopped,
the remaining objects in the array are stopped and a warning is returned. After
an object stops:

• Its TransferStatus property is configured to idle.

• Its ReadAsyncMode property is configured to manual.

• The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If you
execute the readasync function, or configure the ReadAsyncMode property to
continuous, then the new data is appended to the existing data in the input
buffer.

See Also Functions
fprintf, fwrite, readasync

Properties
ReadAsyncMode, TransferStatus

obj A serial port object or an array of serial port objects.

str2double

2-380

2str2doublePurpose Convert string to double-precision value

Syntax x = str2double('str')
X = str2double(C)

Description X = str2double('str') converts the string str, which should be an ASCII
character representation of a real or complex scalar value, to MATLAB's
double-precision representation. The string may contain digits, a comma
(thousands separator), a decimal point, a leading + or - sign, an e preceeding a
power of 10 scale factor, and an i for a complex unit.

If str does not represent a valid scalar value, str2double returns NaN.

X = str2double(C) converts the strings in the cell array of strings C to
double-precision. The matrix X returned will be the same size as C.

Examples Here are some valid str2double conversions.

str2double('123.45e7')
str2double('123 + 45i')
str2double('3.14159')
str2double('2.7i - 3.14')
str2double({'2.71' '3.1415'})
str2double('1,200.34')

See Also char, hex2num, num2str, str2num

str2func

2-381

2str2funcPurpose Constructs a function handle from a function name string

Syntax fhandle = str2func('str')

Description str2func('str') constructs a function handle, fhandle, for the function
named in the string, 'str'.

You can create a function handle using either the @function syntax or the
str2func command. You can also perform this operation on a cell array of
strings. In this case, an array of function handles is returned.

Examples To create a function handle from the function name, 'humps'

fhandle = str2func('humps')

fhandle =

 @humps

To create an array of function handles from a cell array of function names

fh_array = str2func({'sin' 'cos' 'tan'})

fh_array =

 @sin @cos @tan

See Also function_handle, func2str, functions

str2mat

2-382

2str2matPurpose Form a blank padded character matrix from strings

Syntax S = str2mat(T1,T2,T3,..)

Description S = str2mat(T1,T2,T3,..) forms the matrix S containing the text strings
T1,T2,T3,... as rows. The function automatically pads each string with
blanks in order to form a valid matrix. Each text parameter, Ti, can itself be a
string matrix. This allows the creation of arbitrarily large string matrices.
Empty strings are significant.

Note This routine will become obsolete in a future version. Use char instead.

Remarks str2mat differs from strvcat in that empty strings produce blank rows in the
output. In strvcat, empty strings are ignored.

Examples x = str2mat('36842','39751','38453','90307');

whos x
 Name Size Bytes Class

 x 4x5 40 char array

x(2,3)

ans =

 7

See Also char, strvcat

str2num

2-383

2str2numPurpose String to number conversion

Syntax x = str2num('str')

Description x = str2num('str') converts the string str, which is an ASCII character
representation of a numeric value, to MATLAB’s numeric representation. The
string can contain:

• Digits

• A decimal point

• A leading + or - sign

• A letter e or d preceding a power of 10 scale factor

• A letter i or j indicating a complex or imaginary number.

The str2num function can also convert string matrices.

Examples str2num('3.14159e0') is approximately π.

To convert a string matrix:

str2num(['1 2';'3 4'])

ans =

 1 2
 3 4

See Also num2str, hex2num, sscanf, sparse, special characters

strcat

2-384

2strcatPurpose String concatenation

Syntax t = strcat(s1,s2,s3,...)

Description t = strcat(s1,s2,s3,...) horizontally concatenates corresponding rows of
the character arrays s1, s2, s3, etc. All input arrays must have the same
number of rows (or any can be a single string). When the inputs are all
character arrays, the output is also a character array.

When any of the inputs is a cell array of strings, strcat returns a cell array of
strings formed by concatenating corresponding elements of s1, s2, etc. The
inputs must all have the same size (or any can be a scalar). Any of the inputs
can also be character arrays.

Trailing spaces in character array inputs are ignored and do not appear in the
output. This is not true for inputs that are cell arrays of strings. Use the
concatenation syntax [s1 s2 s3 ...] to preserve trailing spaces.

Remarks strcat and matrix operation are different for strings that contain trailing
spaces:

a = 'hello '
b = 'goodbye'
strcat(a,b)
ans =
hellogoodbye
[a b]
ans =
hello goodbye

Examples Given two 1-by-2 cell arrays a and b,

a = b =
 'abcde' 'fghi' 'jkl' 'mn'

the command t = strcat(a,b) yields:

t =
 'abcdejkl' 'fghimn'

Given the 1-by-1 cell array c = {‘Q’}, the command t = strcat(a,b,c) yields:

strcat

2-385

t =
 'abcdejklQ' 'fghimnQ'

See Also strvcat, cat, cellstr

strcmp

2-386

2strcmpPurpose Compare strings

Syntax k = strcmp('str1','str2')
TF = strcmp(S,T)

Description k = strcmp('str1','str2') compares the strings str1 and str2 and returns
logical true (1) if the two are identical, and logical false (0) otherwise.

TF = strcmp(S,T) where either S or T is a cell array of strings, returns an
array TF the same size as S and T containing 1 for those elements of S and T that
match, and 0 otherwise. S and T must be the same size (or one can be a scalar
cell). Either one can also be a character array with the right number of rows.

Remarks Note that the value returned by strcmp is not the same as the C language
convention. In addition, the strcmp function is case sensitive; any leading and
trailing blanks in either of the strings are explicitly included in the
comparison.

Examples strcmp('Yes','No') =
0

strcmp('Yes','Yes') =
1

A =
'MATLAB' 'SIMULINK'

 'Toolboxes' 'The MathWorks'

B =
'Handle Graphics' 'Real Time Workshop'

 'Toolboxes' 'The MathWorks'

C =
'Signal Processing' 'Image Processing'

 'MATLAB' 'SIMULINK'

strcmp(A,B)
ans =

0 0
 1 1

strcmp(A,C)

strcmp

2-387

ans =
0 0

 0 0

See Also strncmp, strcmpi, strncmpi, strmatch, findstr

strcmpi

2-388

2strcmpiPurpose Compare strings ignoring case

Syntax strcmpi(str1,str2)
strcmpi(S,T)

Description strcmpi(str1,str2) returns 1 if strings str1 and str2 are the same except
for case and 0 otherwise.

strcmpi(S,T) when either S or T is a cell array of strings, returns an array the
same size as S and T containing 1 for those elements of S and T that match
except for case, and 0 otherwise. S and T must be the same size (or one can be
a scalar cell). Either one can also be a character array with the right number
of rows.

strcmpi supports international character sets.

See Also findstr, strcmp, strmatch, strncmpi

stream2

2-389

2stream2Purpose Compute 2-D stream line data

Syntax XY = stream2(x,y,u,v,startx,starty)
XY = stream2(u,v,startx,starty)
XY = stream2(...,options)

Description XY = stream2(x,y,u,v,startx,starty) computes stream lines from vector
data u and v. The arrays x and y define the coordinates for u and v and must be
monotonic and 2-D plaid (such as the data produced by meshgrid). startx and
starty define the starting positions of the stream lines. The section "Starting
Points for Stream Plots" in Visualization Techniques provides more
information on defining starting points.

The returned value XY contains a cell array of vertex arrays.

XY = stream2(u,v,startx,starty) assumes the arrays x and y are defined as
[x,y] = meshgrid(1:n,1:m) where [m,n] = size(u).

XY = stream2(...,options) specifies the options used when creating the
stream lines. Define options as a one or two element vector containing the step
size or the step size and the maximum number of vertices in a stream line:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify a value, MATLAB uses the default:

• stepsize = 0.1 (one tenth of a cell)

• naximum number of vertices = 1000

Use the streamline command to plot the data returned by stream2.

Examples This example draws 2-D stream lines from data representing air currents over
regions of North America.

load wind
[sx,sy] = meshgrid(80,20:10:50);
streamline(stream2(x(:,:,5),y(:,:,5),u(:,:,5),v(:,:,5),sx,sy));

stream2

2-390

See Also coneplot, isosurface, reducevolume smooth3, stream3, streamline,
subvolume

stream3

2-391

2stream3Purpose Compute 3-D stream line data

Syntax XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz)
XYZ = stream3(U,V,W,startx,starty,startz)

Description XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz) computes stream lines
from vector data U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and
must be monotonic and 3-D plaid (such as the data produced by meshgrid).
startx, starty, and startz define the starting positions of the stream lines.
The section "Starting Points for Stream Plots" in Visualization Techniques
provides more information on defining starting points.

The returned value XYZ contains a cell array of vertex arrays.

XYZ = stream3(U,V,W,startx,starty,startz) assumes the arrays X, Y, and
Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P) where [M,N,P] =
size(U).

XYZ = stream3(...,options) specifies the options used when creating the
stream lines. Define options as a one or two element vector containing the step
size or the step size and the maximum number of vertices in a stream line:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB uses the default:

• stepsize = 0.1 (one tenth of a cell)

• naximum number of vertices = 1000

Use the streamline command to plot the data returned by stream3.

Examples This example draws 3-D stream lines from data representing air currents over
regions of North America.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamline(stream3(x,y,z,u,v,w,sx,sy,sz))
view(3)

stream3

2-392

See Also coneplot, isosurface, reducevolume smooth3, stream2, streamline,
subvolume

streamline

2-393

2streamlinePurpose Draw stream lines from 2-D or 3-D vector data

Syntax h = streamline(X,Y,Z,U,V,W,startx,starty,startz)
h = streamline(U,V,W,startx,starty,startz)
h = streamline(XYZ)
h = streamline(X,Y,U,V,startx,starty)
h = streamline(U,V,startx,starty)
h = streamline(XY)
h = streamline(...,options)

Description h = streamline(X,Y,Z,U,V,W,startx,starty,startz) draws stream lines
from 3-D vector data U, V, W. The arrays X, Y, Z define the coordinates for U, V, W
and must be monotonic and 3-D plaid (such as the data produced by meshgrid).
startx, starty, startz define the starting positions of the stream lines. The
section "Starting Points for Stream Plots" in Visualization Techniques provides
more information on defining starting points.

The output argument h contains a vector of line handles, one handle for each
stream line.

h = streamline(U,V,W,startx,starty,startz) assumes the arrays X, Y, and
Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P) where [M,N,P] =
size(U).

h = streamline(XYZ) assumes XYZ is a precomputed cell array of vertex arrays
(as produced by stream3).

h = streamline(X,Y,U,V,startx,starty) draws stream lines from 2-D vector
data U, V. The arrays X, Y define the coordinates for U, V and must be monotonic
and 2-D plaid (such as the data produced by meshgrid). startx and starty
define the starting positions of the stream lines. The output argument h
contains a vector of line handles, one handle for each stream line.

h = streamline(U,V,startx,starty) assumes the arrays X and Y are defined
as [X,Y] = meshgrid(1:N,1:M) where [M,N] = size(U).

h = streamline(XY) assumes XY is a precomputed cell array of vertex arrays
(as produced by stream2).

streamline

2-394

streamline(...,options) specifies the options used when creating the
stream lines. Define options as a one or two element vector containing the step
size or the step size and the maximum number of vertices in a stream line:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB uses the default:

• stepsize = 0.1 (one tenth of a cell)

• naximum number of vertices = 1000

Examples This example draws stream lines from data representing air currents over a
region of North America. Loading the wind data set creates the variables x, y,
z, u, v, and w in the MATLAB workspace.

The plane of stream lines indicates the flow of air from the west to the east (the
x direction) beginning at x = 80 (which is close to the minimum value of the x
coordinates). The y and z coordinate starting points are multivalued and
approximately span the range of these coordinates. meshgrid generates the
starting positions of the stream lines.

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
h = streamline(x,y,z,u,v,w,sx,sy,sz);
set(h,'Color','red')
view(3)

See Also stream2, stream3, coneplot, isosurface, smooth3, subvolume, reducevolume

streamparticles

2-395

2streamparticlesPurpose Display stream particles

Syntax streamparticles(vertices)
streamparticles(vertices,n)
streamparticles(...,'PropertyName',PropertyValue,...)
streamparticles(line_handle,...)
h = streamparticles(...)

Description streamparticles(vertices) draws stream particles of a vector field. Stream
particles are usually represented by markers and can show the position and
velocity of a streamline. vertices is a cell array of 2-D or 3-D vertices (as if
produced by stream2 or stream3).

streamparticles(vertices,n) uses n to determine how many stream
particles to draw. The ParticleAlignment property controls how n is
interpreted.

• If ParticleAlignment is set to off (the default) and n is greater than 1, then
approximately n particles are drawn evenly spaced over the streamline
vertices.

If n is less than or equal to 1, n is interpreted as a fraction of the original
stream vertices; for example, if n is 0.2, approximately 20% of the vertices
are used.

n determines the upper bound for the number of particles drawn. Note that
the actual number of particles may deviate from n by as much as a factor of 2.

• If ParticleAlignment is on, n determines the number of particles on the
streamline having the most vertices and sets the spacing on the other
streamlines to this value. The default value is n = 1.

streamparticles(...,'PropertyName',PropertyValue,...) controls the
stream particles using named properties and specified values. Any unspecified
properties have default values. MATLAB ignores the case of property names.

Stream Particle Properties
Animate – Stream particle motion [non-negative integer]

The number of times to animate the stream particles. The default is 0, which
does not animate. Inf animates until you enter ctrl-c.

streamparticles

2-396

FrameRate – Animation frames per second [non-negative integer]

This property specifies the number of frames per second for the animation. Inf,
the default draws the animation as fast as possible. Note that speed of the
animation may be limited by the speed of the computer. In such cases, the
value of FrameRate can not necessarily be achieved.

ParticleAlignment – Align particles with stream lines [on | {off}]

Set this property to on to draw particles at the beginning of each the stream
line. This property controls how streamparticles interprets the argument n
(number of stream particles).

Stream particles are line objects. In addition to stream particle properties, you
can specify any line object property, such as Marker and EraseMode.
streamparticles sets the following line properties when called.

You can override any of these properties by specifying a property name and
value as arguments to streamparticles. For example, this statement uses
RGB values to set the MarkerFaceColor to medium gray:

streamparticles(vertices,'MarkerFaceColor',[.5 .5 .5])

streamparticles(line_handle,...) uses the line object identified by
line_handle to draw the stream particles.

h = streamparticles(...) returns a vector of handles to the line objects it
creates.

Examples This example combines stream lines with stream particle animation. The
interpstreamspeed function determines the vertices along the stream lines

Line Property Value Set by streamparticles

EraseMode xor

LineStyle none

Marker o

MarkerEdgeColor none

MarkerFaceColor red

streamparticles

2-397

where stream particles will be drawn during the animation, thereby
controlling the speed of the animation. Setting the axes DrawMode property to
fast provides faster rendering.

load wind
[sx sy sz] = meshgrid(80,20:1:55,5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
sl = streamline(verts);
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.025);
axis tight; view(30,30); daspect([1 1 .125])
camproj perspective; camva(8)
set(gca,'DrawMode','fast')
box on
streamparticles(iverts,35,'animate',10,'ParticleAlignment','on'
)

The following picture is a static view of the animation.

This example uses the stream lines in the z = 5 plane to animate the flow along
these lines with steamparticles.

load wind
daspect([1 1 1]); view(2)
[verts averts] = streamslice(x,y,z,u,v,w,[],[],[5]);

streamparticles

2-398

sl = streamline([verts averts]);
axis tight off;
set(sl,'Visible','off')
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.05);
set(gca,'DrawMode','fast','Position',[0 0 1 1],'ZLim',[4.9 5.1])
set(gcf,'Color','black')
streamparticles(iverts, 200, ...
 'Animate',100,'FrameRate',40, ...
 'MarkerSize',10,'MarkerFaceColor','yellow')

See Also isosurface, isocaps, smooth3, subvolume, reducevolume, reducepatch,
isonormals

streamribbon

2-399

2streamribbonPurpose Creates a 3-D stream ribbon plot

Syntax streamribbon(X,Y,Z,U,V,W,startx,starty,startz)
streamribbon(U,V,W,startx,starty,startz)
streamribbon(vertices,X,Y,Z,cav,speed)
streamribbon(vertices,cav,speed)
streamribbon(vertices,twistangle)
streamribbon(...,width)
h = streamribbon(...)

Description streamribbon(X,Y,Z,U,V,W,startx,starty,startz) draws stream ribbons
from vector volume data U, V, W. The arrays X, Y, Z define the coordinates for U,
V, W and must be monotonic and 3-D plaid (as if produced by meshgrid). startx,
starty, and startz define the starting positions of the stream ribbons at the
center of the ribbons. The section "Starting Points for Stream Plots" in
Visualization Techniques provides more information on defining starting
points.

The twist of the ribbons is proportional to the curl of the vector field. The width
of the ribbons is calculated automatically.

Generally, you should set the DataAspectRatio (daspect) before calling
streamribbon.

streamribbon(U,V,W,startx,starty,startz) assumes X, Y, and Z are
determined by the expression:

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamribbon(vertices,X,Y,Z,cav,speed) assumes precomputed
streamline vertices, curl angular velocity, and flow speed. vertices is a cell
array of stream line vertices (as produced by stream3). X, Y, Z, cav, and speed
are 3-D arrays.

streamribbon(vertices,cav,speed) assumes X, Y, and Z are determined by
the expression:

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

streamribbon

2-400

where [m,n,p] = size(cav)

streamribbon(vertices,twistangle) uses the cell array of vectors
twistangle for the twist of the ribbons (in radians). The size of each
corresponding element of vertices and twistangle must be equal.

streamribbon(...,width) sets the width of the ribbons to width.

h = streamribbon(...) returns a vector of handles (one per start point) to
surface objects.

Examples This example uses stream ribbons to indicate the flow in the wind data set.
Inputs include the coordinates, vector field components, and starting location
for the stream ribbons.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
daspect([1 1 1])
streamribbon(x,y,z,u,v,w,sx,sy,sz);
%-----Define viewing and lighting
axis tight
shading interp;
view(3);
camlight; lighting gouraud

streamribbon

2-401

This example uses precalculated vertex data (stream3), curl average velocity

(curl), and speed (). Using precalculated data enables you to use
values other than those calculated from the single data source. In this case, the
speed is reduced by a factor of 10 compared to the previous example.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
daspect([1 1 1])
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
cav = curl(x,y,z,u,v,w);
spd = sqrt(u.^2 + v.^2 + w.^2).*.1;
streamribbon(verts,x,y,z,cav,spd);
%-----Define viewing and lighting
axis tight
shading interp
view(3)
camlight; lighting gouraud

u2 v2 w2
+ +

streamribbon

2-402

This example specifies a twist angle for the stream ribbon.

t = 0:.15:15;
verts = {[cos(t)' sin(t)' (t/3)']};
twistangle = {cos(t)'};
daspect([1 1 1])
streamribbon(verts,twistangle);
%-----Define viewing and lighting
axis tight
shading interp;
view(3);
camlight; lighting gouraud

streamribbon

2-403

This example combines cone plots (coneplot) and stream ribbon plots in one
graph.

%-----Define 3-D arrays x, y, z, u, v, w
xmin = -7; xmax = 7;
ymin = -7; ymax = 7;
zmin = -7; zmax = 7;
x = linspace(xmin,xmax,30);
y = linspace(ymin,ymax,20);
z = linspace(zmin,zmax,20);
[x y z] = meshgrid(x,y,z);
u = y; v = -x; w = 0*x+1;
daspect([1 1 1]);
[cx cy cz] = meshgrid(linspace(xmin,xmax,30),...

linspace(ymin,ymax,30),[-3 4]);
h = coneplot(x,y,z,u,v,w,cx,cy,cz,'quiver');
set(h,'color','k');
%-----Plot two sets of streamribbons
[sx sy sz] = meshgrid([-1 0 1],[-1 0 1],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
[sx sy sz] = meshgrid([1:6],[0],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);

streamribbon

2-404

%-----Define viewing and lighting
shading interp
view(-30,10) ; axis off tight
camproj perspective; camva(66); camlookat;
camdolly(0,0,.5,'fixtarget')
camlight

 See also curl, streamtube, streamline, stream3

streamslice

2-405

2streamslicePurpose Draws stream lines in slice planes

Syntax streamslice(X,Y,Z,U,V,W,startx,starty,startz)
streamslice(U,V,W,startx,starty,startz)
streamslice(X,Y,U,V)
streamslice(U,V)
streamslice(...,density)
streamslice(...,'arrowmode')
streamslice(...,'method')
h = streamslice(...)
[vertices arrowvertices] = streamslice(...)

Description streamslice(X,Y,Z,U,V,W,startx,starty,startz) draws well spaced
streamlines (with direction arrows) from vector data U, V, W in axis aligned x-,
y-, z-planes at the points in the vectors startx, starty, startz. (The section
"Starting Points for Stream Plots" in Visualization Techniques provides more
information on defining starting points.) The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (as if produced by
meshgrid). U, V, W must be m-by-n-by-p volume arrays.

You should not assumed that the flow is parallel to the slice plane. For
example, in a stream slice at a constant z, the z component of the vector field,
W, is ignored when calculating the streamlines for that plane.

Stream slices are useful for determining where to start stream lines, stream
tubes, and stream ribbons.

streamslice(U,V,W,startx,starty,startz) assumes X, Y, and Z are
determined by the expression:

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamslice(X,Y,U,V) draws well spaced stream lines (with direction arrows)
from vector volume data U, V. The arrays X, Y define the coordinates for U, V and
must be monotonic and 2-D plaid (as if produced by meshgrid).

streamslice(U,V) assumes X, Y, and Z are determined by the expression:

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

streamslice

2-406

where [m,n,p] = size(U)

streamslice(...,density) modifies the automatic spacing of the stream
lines. density must be greater than 0. The default value is 1; higher values
produce more stream lines on each plane. For example, 2 produces
approximately twice as many stream lines, while 0.5 produces approximately
half as many.

streamslice(...,'arrowsmode') determines if direction arrows are present
or not. arrowmode can be:

• arrows – draw direction arrows on the streamlines (default)

• noarrows – does not draw direction arrows

streamslice(...,'method') specifies the interpolation method to use. method
can be:

• linear – linear interpolation (default)

• cubic – cubic interpolation

• nearest – nearest neighbor interpolation

See interp3 for more information interpolation methods.

h = streamslice(...) returns a vector of handles to the line objects created.

[vertices arrowvertices] = streamslice(...) returns two cell arrays of
vertices for drawing the stream lines and the arrows. You can pass these values
to any of the stream line drawing functions (streamline, streamribbon,
streamtube)

Examples This example creates a stream slice in the wind data set at z = 5.

load wind
daspect([1 1 1])
streamslice(x,y,z,u,v,w,[],[],[5])
axis tight

streamslice

2-407

This example uses streamslice to calculate vertex data for the stream lines
and the direction arrows. This data is then used by streamline to plot the lines

and arrows. Slice planes illustrating with color the wind speed ()
are drawn by slice in the same planes.

load wind
daspect([1 1 1])
[verts averts] = streamslice(u,v,w,10,10,10);
streamline([verts averts])
spd = sqrt(u.^2 + v.^2 + w.^2);
hold on;
slice(spd,10,10,10);
colormap(hot)
shading interp
view(30,50); axis(volumebounds(spd));
camlight; material([.5 1 0])

u2 v2 w2
+ +

streamslice

2-408

This example superimposes contour lines on a surface and then uses
streamslice to draw lines that indicate the gradient of the surface. interp2 is
used to find the points for the lines that lie on the surface.

z = peaks;
surf(z)
shading interp
hold on
[c ch] = contour3(z,20); set(ch,'edgecolor','b')
[u v] = gradient(z);
h = streamslice(-u,-v);
set(h,'color','k')
for i=1:length(h);

zi = interp2(z,get(h(i),'xdata'),get(h(i),'ydata'));
set(h(i),'zdata',zi);

end
view(30,50); axis tight

streamslice

2-409

 See also contourslice, slice, streamline, volumebounds

streamtube

2-410

2streamtubePurpose Creates a 3-D stream tube plot

Syntax streamtube(X,Y,Z,U,V,W,startx,starty,startz)
streamtube(U,V,W,startx,starty,startz)
streamtube(vertices,X,Y,Z,divergence)
streamtube(vertices,divergence)
streamtube(vertices,width)
streamtube(vertices)
streamtube(...,[scale n])
h = streamtube(...)

Description streamtube(X,Y,Z,U,V,W,startx,starty,startz) draws stream tubes from
vector volume data U, V, W. The arrays X, Y, Z define the coordinates for U, V, W
and must be monotonic and 3-D plaid (as if produced by meshgrid). startx,
starty, and startz define the starting positions of the stream lines at the
center of the tubes. The section "Starting Points for Stream Plots" in
Visualization Techniques provides more information on defining starting
points.

The width of the tubes is proportional to the normalized divergence of the
vector field.

Generally, you should set the DataAspectRatio (daspect) before calling
streamtube.

streamtube(U,V,W,startx,starty,startz) assumes X, Y, and Z are
determined by the expression:

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamtube(vertices,X,Y,Z,divergence) assumes precomputed stream line
vertices and divergence. vertices is a cell array of stream line vertices (as
produced by stream3). X, Y, Z, and divergence are 3-D arrays.

streamtube(vertices,divergence) assumes X, Y, and Z are determined by
the expression:

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

streamtube

2-411

where [m,n,p] = size(divergence)

streamtube(vertices,width) specifies the width of the tubes in the cell array
of vectors, width. The size of each corresponding element of vertices and
width must be equal. width can also be a scalar, specifying a single value for
the width of all stream tubes.

streamtube(vertices) selects the width automatically.

streamtube(...,[scale n]) scales the width of the tubes by scale. The
default is scale = 1. When the stream tubes are created using start points or
divergence, specifying scale = 0 suppresses automatic scaling. n is the
number of points along the circumference of the tube. The default is n = 20.

h = streamtube(...z) returns a vector of handles (one per start point) to
surface objects used to draw the stream tubes.

Examples This example uses stream tubes to indicate the flow in the wind data set.
Inputs include the coordinates, vector field components, and starting location
for the stream tubes.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
daspect([1 1 1])
streamtube(x,y,z,u,v,w,sx,sy,sz);
%-----Define viewing and lighting
view(3)
axis tight
shading interp;
camlight; lighting gouraud

streamtube

2-412

This example uses precalculated vertex data (stream3) and divergence
(divergence).

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
daspect([1 1 1])
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
div = divergence(x,y,z,u,v,w);
streamtube(verts,x,y,z,-div);
%-----Define viewing and lighting
view(3)
axis tight
shading interp
camlight; lighting gouraud

streamtube

2-413

See also divergence, streamribbon, streamline, stream3

strfind

2-414

2strfindPurpose Find one string within another

Syntax k = strfind(str,pattern)

Description k = strfind(str,pattern) searches the string, str, for occurrences of a
shorter string, pattern, returning the starting index of each such occurrence
in the double array, k. If pattern is not found in str, or if pattern is longer
than str, then strfind returns the empty array, [].

The search performed by strfind is case sensitive. Any leading and trailing
blanks in either str or pattern are explicitly included in the comparison.

Use the function findstr, if you are not certain which of the two input strings
is the longer one.

Examples s = 'Find the starting indices of the pattern string';
strfind(s,'in')
ans =
 2 15 19 45

strfind(s,'In')
ans =
 []

strfind(s,' ')
ans =
 5 9 18 26 29 33 41

See Also findstr, strmatch, strtok, strcmp, strncmp, strcmpi, strncmpi

strings

2-415

2stringsPurpose MATLAB string handling

Syntax S = 'Any Characters'
S = char(X)
X = double(S)

Description S = 'Any Characters' creates a character array, or string. The string is
actually a vector whose components are the numeric codes for the characters
(the first 127 codes are ASCII). The actual characters displayed depend on the
character set encoding for a given font. The length of S is the number of
characters. A quote within the string is indicated by two quotes.

S = [S1 S2 ...] concatenates character arrays S1, S2, etc. into a new
character array, S.

S = strcat(S1, S2, ...) concatenates S1, S2, etc., which can be character
arrays or cell arrays of strings. When the inputs are all character arrays, the
output is also a character array. When any of the inputs is a cell array of
strings, strcat returns a cell array of strings.

Trailing spaces in strcat character array inputs are ignored and do not appear
in the output. This is not true for strcat inputs that are cell arrays of strings.
Use the S = [S1 S2 ...] concatenation syntax, shown above, to preserve
trailing spaces.

S = char(X) can be used to convert an array that contains positive integers
representing numeric codes into a MATLAB character array.

X = double(S) converts the string to its equivalent double precision numeric
codes.

A collection of strings can be created in either of the following two ways:

• As the rows of a character array via strvcat

• As a cell array of strings via the curly braces

You can convert between character array and cell array of strings using char
and cellstr. Most string functions support both types.

ischar(S) tells if S is a string variable. iscellstr(S) tells if S is a cell array of
strings.

strings

2-416

Examples Create a simple string that includes a single quote.

msg = 'You''re right!'

msg =
You're right!

Create the string, name, using two methods of concatenation.

name = ['Thomas' ' R. ' 'Lee']

name = strcat('Thomas',' R.',' Lee')

Create a vertical array of strings.

C = strvcat('Hello','Yes','No','Goodbye')

C =
Hello
Yes
No
Goodbye

Create a cell array of strings.

S = {'Hello' 'Yes' 'No' 'Goodbye'}

S =
 'Hello' 'Yes' 'No' 'Goodbye'

See Also char, cellstr, ischar, iscellstr, strvcat, sprintf, sscanf, input

strjust

2-417

2strjustPurpose Justify a character array

Syntax T = strjust(S)
T = strjust(S,'right')
T = strjust(S,'left')
T = strjust(S,'center')

Description T = strjust(S) or T = strjust(S,'right') returns a right-justified version
of the character array S.

T = strjust(S,'left') returns a left-justified version of S.

T = strjust(S,'center') returns a center-justified version of S.

See Also deblank

strmatch

2-418

2strmatchPurpose Find possible matches for a string

Syntax x = strmatch('str',STRS)
x = strmatch('str',STRS,'exact')

Description x = strmatch('str',STRS) looks through the rows of the character array or
cell array of strings STRS to find strings that begin with string str, returning
the matching row indices. strmatch is fastest when STRS is a character array.

x = strmatch('str',STRS,'exact') returns only the indices of the strings in
STRS matching str exactly.

Examples The statement

x = strmatch('max',strvcat('max','minimax','maximum'))

returns x = [1; 3] since rows 1 and 3 begin with 'max'. The statement

x = strmatch('max',strvcat('max','minimax','maximum'),'exact')

returns x = 1, since only row 1 matches 'max' exactly.

See Also strcmp, strcmpi, strncmp, strncmpi, findstr, strvcat

strncmp

2-419

2strncmpPurpose Compare the first n characters of two strings

Syntax k = strncmp('str1','str2',n)
TF = strncmp(S,T,n)

Description k = strncmp('str1','str2',n) returns logical true (1) if the first n
characters of the strings str1 and str2 are the same, and returns logical false
(0) otherwise. Arguments str1 and str2 may also be cell arrays of strings.

TF = strncmp(S,T,N) where either S or T is a cell array of strings, returns an
array TF the same size as S and T containing 1 for those elements of S and T that
match (up to n characters), and 0 otherwise. S and T must be the same size (or
one can be a scalar cell). Either one can also be a character array with the right
number of rows.

Remarks The command strncmp is case sensitive. Any leading and trailing blanks in
either of the strings are explicitly included in the comparison.

See Also strcmp, strcmpi, strncmpi, strmatch, findstr

strncmpi

2-420

2strncmpiPurpose Compare first n characters of strings ignoring case

Syntax strncmpi('str1','str2',n)
TF = strncmpi(S,T,n)

Description strncmpi('str1','str2',n) returns 1 if the first n characters of the strings
str1 and str2 are the same except for case, and 0 otherwise.

TF = strncmpi(S,T,n) when either S or T is a cell array of strings, returns an
array the same size as S and T containing 1 for those elements of S and T that
match except for case (up to n characters), and 0 otherwise. S and T must be the
same size (or one can be a scalar cell). Either one can also be a character array
with the right number of rows.

strncmpi supports international character sets.

See Also strncmp, strcmp, strcmpi, strmatch, findstr

strread

2-421

2strreadPurpose Read formatted data from a string

Syntax A = strread('str')
A = strread('str','',N)
A = strread('str','',param,value,...)
A = strread('str','',N,param,value,...)
[A,B,C,...] = strread('str','format')
[A,B,C,...] = strread('str','format',N)
[A,B,C,...] = strread('str','format',param,value,...)
[A,B,C,...] = strread('str','format',N,param,value,...)

Description The first four syntaxes are used on strings containing only numeric data. If the
input string, str, contains any text data, an error is generated.

A = strread('str') reads numeric data from the string, str, into the single
variable A.

A = strread('str','',N) reads N lines of numeric data, where N is an integer
greater than zero. If N is -1, strread reads the entire string.

A = strread('str','',param,value,...) customizes strread using param/
value pairs, as listed in the table below.

A = strread('str','',N,param,value,...) reads N lines and customizes
the strread using param/value pairs.

The next four syntaxes can be used on numeric or nonnumeric data. In this
case, strread reads data from the string, str, into the variables A, B, C, and so
on, using the specified format.

The type of each return argument is given by the format string. The number of
return arguments must match the number of conversion specifiers in the
format string. If there are fewer fields in the string than matching conversion
specifiers in the format string, an error is generated.

The format string determines the number and types of return arguments. The
number of return arguments is the number of items in the format string. The
format string supports a subset of the conversion specifiers and conventions of

strread

2-422

the C language fscanf routine. Values for the format string are listed in the
table below. Whitespace characters in the format string are ignored.

[A,B,C,...] = strread('str','format') reads data from the string, str,
into the variables A, B, C, and so on, using the specified format, until the entire
string is read.

format Action Output

Literals
(ordinary
characters)

Ignore the matching characters.
For example, in a file that has
Dept followed by a number (for
department number), to skip the
Dept and read only the number,
use 'Dept' in the format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating point value. Double array

%s Read a whitespace-separated
string.

Cell array of strings

%q Read a string, which could be in
double quotes.

Cell array of
strings. Does not
include the double
quotes.

%c Read characters, including white
space.

Character array

%[...] Read the longest string containing
characters specified in the
brackets.

Cell array of strings

%[^...] Read the longest non-empty string
containing characters that are not
specified in the brackets.

Cell array of strings

strread

2-423

[A,B,C,...] = strread('str','format',N) reads the data, reusing the
format string N times, where N is an integer greater than zero. If N is -1, strread
reads the entire string.

[A,B,C,...] = strread('str','format',param,value,...) customizes
strread using param/value pairs, as listed in the table below.

[A,B,C,...] = strread('str','format',N,param,value,...) reads the
data, reusing the format string N times and customizes the strread using
param/value pairs.

%*...
instead of %

Ignore the matching characters
specified by *.

No output

%w...
instead of %

Read field width specified by w.
The %f format supports %w.pf,
where w is the field width and p is
the precision.

param value Action

whitespace * where
* can be:

Treats vector of characters, *, as
whitespace. Default is \b\r\n\t.

b
f
n
r
t
\\
\'' or ''
%%

Backspace
Form feed
New line
Carriage return
Horizontal tab
Backslash
Single quotation mark
Percent sign

delimiter Delimiter
character

Specifies delimiter character. Default is
none.

expchars Exponent
characters

Default is eEdD.

format Action Output

strread

2-424

Remarks If your data uses a character other than a space as a delimiter, you must use
the strread parameter 'delimiter' to specify the delimiter. For example, if the
string, str, used a semicolon as a delimiter, you would use this command.

[names,types,x,y,answer] = strread(str,'%s %s %f ...
 %d %s','delimiter',';')

Examples s = sprintf('a,1,2\nb,3,4\n');
[a,b,c] = strread(s,'%s%d%d','delimiter',',')

a =
 'a'
 'b'

b =
 1
 3

c =
 2
 4

See Also textread, sscanf

bufsize positive
integer

Specifies the maximum string length, in
bytes. Default is 4095.

headerlines positive
integer

Ignores the specified number of lines at
the beginning of the file.

commentstyle matlab Ignores characters after %

commentstyle shell Ignores characters after #.

commentstyle c Ignores characters between /* and */.

commentstyle c++ Ignores characters after //.

param value Action

strrep

2-425

2strrepPurpose String search and replace

Syntax str = strrep(str1,str2,str3)

Description str = strrep(str1,str2,str3) replaces all occurrences of the string str2
within string str1 with the string str3.

strrep(str1,str2,str3), when any of str1, str2, or str3 is a cell array of
strings, returns a cell array the same size as str1, str2 and str3 obtained by
performing a strrep using corresponding elements of the inputs. The inputs
must all be the same size (or any can be a scalar cell). Any one of the strings
can also be a character array with the right number of rows.

Examples s1 = 'This is a good example.';
str = strrep(s1,'good','great')
str =
This is a great example.

A =
'MATLAB' 'SIMULINK'

 'Toolboxes' 'The MathWorks'

B =
'Handle Graphics' 'Real Time Workshop'

 'Toolboxes' 'The MathWorks'

C =
'Signal Processing' 'Image Processing'

 'MATLAB' 'SIMULINK'

strrep(A,B,C)
ans =

'MATLAB' 'SIMULINK’
 'MATLAB' 'SIMULINK’

See Also findstr

strtok

2-426

2strtokPurpose First token in string

Syntax token = strtok('str',delimiter)
token = strtok('str')
[token,rem] = strtok(...)

Description token = strtok('str',delimiter) returns the first token in the text string
str, that is, the first set of characters before a delimiter is encountered. The
vector delimiter contains valid delimiter characters. Any leading delimiters
are ignored.

token = strtok('str') uses the default delimiters, the white space
characters. These include tabs (ASCII 9), carriage returns (ASCII 13), and
spaces (ASCII 32). Any leading white space characters are ignored.

[token,rem] = strtok(...) returns the remainder rem of the original string.
The remainder consists of all characters from the first delimiter on.

Examples s = ' This is a good example.';
[token,rem] = strtok(s)
token =
This
rem =
is a good example.

See Also findstr, strmatch

struct

2-427

2structPurpose Create structure array

Syntax s = struct('field1',{},'field2',{},...)
s = struct('field1',values1,'field2',values2,...)

Description s = struct('field1',{},'field2',{},...) creates an empty structure
with fields field1, field2, ...

s = struct('field1',values1,'field2',values2,...) creates a structure
array with the specified fields and values. The value arrays values1, values2,
etc. must be cell arrays of the same size or scalar cells. Corresponding elements
of the value arrays are placed into corresponding structure array elements. The
size of the resulting structure is the same size as the value cell arrays or 1-by-1
if none of the values is a cell.

Examples The command

s = struct('type',{'big','little'},'color',{'red'},'x',{3 4})

produces a structure array s:

s =
1x2 struct array with fields:
 type
 color
 x

The value arrays have been distributed among the fields of s:

s(1)
ans =

type: 'big'
 color: 'red'
 x: 3

s(2)
ans =

type: 'little'
 color: 'red'
 x: 4

struct

2-428

Similarly, the command

a.b = struct('z',{});

produces an empty structure a.b with field z.

a.b
ans =
 0x0 struct array with fields:
 z

See Also fieldnames, getfield, rmfield, setfield

struct2cell

2-429

2struct2cellPurpose Structure to cell array conversion

Syntax c = struct2cell(s)

Description c = struct2cell(s) converts the m-by-n structure s (with p fields) into a
p-by-m-by-n cell array c.

If structure s is multidimensional, cell array c has size [p size(s)].

Examples The commands

clear s, s.category = 'tree';
s.height = 37.4; s.name = 'birch';

create the structure

s =
 category: 'tree'
 height: 37.4000
 name: 'birch'

Converting the structure to a cell array,

c = struct2cell(s)

c =
 'tree'
 [37.4000]
 'birch'

See Also cell2struct, fieldnames

strvcat

2-430

2strvcatPurpose Vertical concatenation of strings

Syntax S = strvcat(t1,t2,t3,...)

Description S = strvcat(t1,t2,t3,...) forms the character array S containing the text
strings (or string matrices) t1,t2,t3,... as rows. Spaces are appended to each
string as necessary to form a valid matrix. Empty arguments are ignored.

Remarks If each text parameter, ti, is itself a character array, strvcat appends them
vertically to create arbitrarily large string matrices.

Examples The command strvcat('Hello','Yes') is the same as ['Hello';'Yes '],
except that strvcat performs the padding automatically.

t1 = 'first';t2 = 'string';t3 = 'matrix';t4 = 'second';

S1 = strvcat(t1,t2,t3) S2 = strvcat(t4,t2,t3)

S1 = S2 =

first second
string string
matrix matrix

S3 = strvcat(S1,S2)

S3 =
first
string
matrix
second
string
matrix

See Also cat, int2str, mat2str, num2str, strings

sub2ind

2-431

2sub2indPurpose Single index from subscripts

Syntax IND = sub2ind(siz,I,J)
IND = sub2ind(siz,I1,I2,...,In)

Description The sub2ind command determines the equivalent single index corresponding
to a set of subscript values.

IND = sub2ind(siz,I,J) returns the linear index equivalent to the row and
column subscripts I and J for a matrix of size siz.

IND = sub2ind(siz,I1,I2,...,In) returns the linear index equivalent to the
n subscripts I1,I2,...,In for an array of size siz.

Examples Create a 3-by-4-by-2 matrix, A.

A = [17 24 1 8; 2 22 7 14; 4 6 13 20];
A(:,:,2) = A - 10

A(:,:,1) =

 17 24 1 8
 2 22 7 14
 4 6 13 20

A(:,:,2) =

 7 14 -9 -2
 -8 12 -3 4
 -6 -4 3 10

The value at row 2, column 1, page 2 of the matrix is -8.

A(2,1,2)

ans =

 -8

To convert A(2,1,2) into its equivalent single subscript, use sub2ind.

sub2ind

2-432

sub2ind(size(A),2,1,2)

ans =

 14

You can now access the same location in A using the single subscripting
method.

A(14)

ans =

 -8

See Also ind2sub, find

subplot

2-433

2subplotPurpose Create and control multiple axes

Syntax subplot(m,n,p)
subplot(m,n,p,'replace')
subplot(h)
subplot('Position',[left bottom width height])
h = subplot(...)

Description subplot divides the current figure into rectangular panes that are numbered
row-wise. Each pane contains an axes. Subsequent plots are output to the
current pane.

subplot(m,n,p) creates an axes in the p-th pane of a figure divided into an
m-by-n matrix of rectangular panes. The new axes becomes the current axes. If
p is a vector, specifies an axes having a position that covers all the subplot
positions listed in p.

subplot(m,n,p,'replace') If the specified axes already exists, delete it and
creat a new axes.

subplot(h) makes the axes with handle h current for subsequent plotting
commands.

subplot('Position',[left bottom width height]) creates an axes at the
position specified by a four-element vector. left, bottom, width, and height
are in normalized coordinates in the range from 0.0 to 1.0.

h = subplot(...) returns the handle to the new axes.

Remarks If a subplot specification causes a new axes to overlap any existing axes, then
subplot deletes the existing axes. However, if the subplot specification exactly
matches the position of an existing axes, then the matching axes is not deleted
and it becomes the current axes.

subplot(1,1,1) or clf deletes all axes objects and returns to the default
subplot(1,1,1) configuration.

You can omit the parentheses and specify subplot as.

subplot mnp

subplot

2-434

where m refers to the row, n refers to the column, and p specifies the pane.

Special Case – subplot(111)
The command subplot(111) is not identical in behavior to subplot(1,1,1)
and exists only for compatibility with previous releases. This syntax does not
immediately create an axes, but instead sets up the figure so that the next
graphics command executes a clf reset (deleting all figure children) and
creates a new axes in the default position. This syntax does not return a
handle, so it is an error to specify a return argument. (This behavior is
implemented by setting the figure’s NextPlot property to replace.)

Examples To plot income in the top half of a figure and outgo in the bottom half,

income = [3.2 4.1 5.0 5.6];
outgo = [2.5 4.0 3.35 4.9];
subplot(2,1,1); plot(income)
subplot(2,1,2); plot(outgo)

subplot

2-435

1 1.5 2 2.5 3 3.5 4
3

3.5

4

4.5

5

5.5

6

1 1.5 2 2.5 3 3.5 4
2.5

3

3.5

4

4.5

5

subplot

2-436

The following illustration shows four subplot regions and indicates the
command used to create each.

See Also axes, cla, clf, figure, gca

subsasgn

2-437

2subsasgnPurpose Overloaded method for A(I)=B, A{I}=B, and A.field=B

Syntax A = subsasgn(A,S,B)

Description A = subsasgn(A,S,B) is called for the syntax A(i)=B, A{i}=B, or A.i=B when
A is an object. S is a structure array with the fields:

• type: A string containing '()', '{}', or '.', where '()' specifies integer
subscripts; '{}' specifies cell array subscripts, and '.' specifies subscripted
structure fields.

• subs: A cell array or string containing the actual subscripts.

Remarks subsasgn is designed to be used by the MATLAB interpreter to handle indexed
assignments to objects. Calling subsasgn directly as a function is not
recommended. If you do use subsasgn in this way, it conforms to the formal
MATLAB dispatching rules and may yield unexpected results.

Examples The syntax A(1:2,:)=B calls A=subsasgn(A,S,B) where S is a 1-by-1 structure
with S.type='()' and S.subs = {1:2,':'}. A colon used as a subscript is
passed as the string ':'.

The syntax A{1:2}=B calls A=subsasgn(A,S,B) where S.type='{}'.

The syntax A.field=B calls subsasgn(A,S,B) where S.type='.' and
S.subs='field'.

These simple calls are combined in a straightforward way for more complicated
subscripting expressions. In such cases length(S) is the number of
subscripting levels. For instance, A(1,2).name(3:5)=B calls
A=subsasgn(A,S,B) where S is 3-by-1 structure array with the following
values:

See Also subsref

See “Handling Subscripted Assignment” for more information about
overloaded methods and subsasgn.

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={3:5}

subsindex

2-438

2subsindexPurpose Overloaded method for X(A)

Syntax ind = subsindex(A)

Description ind = subsindex(A) is called for the syntax 'X(A)' when A is an object.
subsindex must return the value of the object as a zero-based integer index.
(ind must contain integer values in the range 0 to prod(size(X))-1).
subsindex is called by the default subsref and subsasgn functions, and you
can call it if you overload these functions.

See Also subsasgn, subsref

subspace

2-439

2subspacePurpose Angle between two subspaces

Syntax theta = subspace(A,B)

Description theta = subspace(A,B) finds the angle between two subspaces specified by
the columns of A and B. If A and B are column vectors of unit length, this is the
same as acos(A'*B).

Remarks If the angle between the two subspaces is small, the two spaces are nearly
linearly dependent. In a physical experiment described by some observations
A, and a second realization of the experiment described by B, subspace(A,B)
gives a measure of the amount of new information afforded by the second
experiment not associated with statistical errors of fluctuations.

Examples Consider two subspaces of a Hadamard matrix, whose columns are orthogonal.

H = hadamard(8);
A = H(:,2:4);
B = H(:,5:8);

Note that matrices A and B are different sizes— A has three columns and B four.
It is not necessary that two subspaces be the same size in order to find the
angle between them. Geometrically, this is the angle between two hyperplanes
embedded in a higher dimensional space.

theta = subspace(A,B)
theta =
 1.5708

That A and B are orthogonal is shown by the fact that theta is equal to .

theta - pi/2
ans =
 0

π 2⁄

subsref

2-440

2subsrefPurpose Overloaded method for A(I), A{I} and A.field

Syntax B = subsref(A,S)

Description B = subsref(A,S) is called for the syntax A(i), A{i}, or A.i when A is an
object. S is a structure array with the fields:

• type: A string containing '()', '{}', or '.', where '()' specifies integer
subscripts; '{}' specifies cell array subscripts, and '.' specifies subscripted
structure fields.

• subs: A cell array or string containing the actual subscripts.

Remarks subsref is designed to be used by the MATLAB interpreter to handle indexed
references to objects. Calling subsref directly as a function is not
recommended. If you do use subsref in this way, it conforms to the formal
MATLAB dispatching rules and may yield unexpected results.

Examples The syntax A(1:2,:) calls subsref(A,S) where S is a 1-by-1 structure with
S.type='()' and S.subs={1:2,':'}. A colon used as a subscript is passed as
the string ':'.

The syntax A{1:2} calls subsref(A,S) where S.type='{}' and S.subs={1:2}.

The syntax A.field calls subsref(A,S) where S.type='.' and
S.subs='field'.

These simple calls are combined in a straightforward way for more complicated
subscripting expressions. In such cases length(S) is the number of
subscripting levels. For instance, A(1,2).name(3:5) calls subsref(A,S)where
S is 3-by-1 structure array with the following values:

See Also subsasgn

See “Handling Subscripted Reference” for more information about overloaded
methods and subsref.

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={3:5}

substruct

2-441

2substructPurpose Create structure argument for subsasgn or subsref

Syntax S = substruct(type1,subs1,type2,subs2,...)

Description S = substruct(type1,subs1,type2,subs2,...) creates a structure with the
fields required by an overloaded subsref or subsasgn method. Each type
string must be one of '.', '()', or '{}'. The corresponding subs argument must be
either a field name (for the '.' type) or a cell array containing the index vectors
(for the '()' or '{}' types).

The output S is a structure array containing the fields:

• type – one of '.', '()', or '{}'

• subs – subscript values (field name or cell array of index vectors)

Examples To call subsref with parameters equivalent to the syntax

B = A(3,5).field

you can use

S = substruct('()',{3,5},'.','field');
B = subsref(A,S);

The structure created by substruct in this example contains the following.

S(1)

ans =

 type: '()'
 subs: {[3] [5]}

S(2)

ans =

 type: '.'
 subs: 'field'

See Also subsasgn, subsref

subvolume

2-442

2subvolumePurpose Extract subset of volume data set

Syntax [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits)
[Nx,Ny,Nz,Nv] = subvolume(V,limits)
Nv = subvolume(...)

Description [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits) extracts a subset of the
volume data set V using the specified axis-aligned limits. limits =
[xmin,xmax,ymin, ymax,zmin,zmax] (Any NaNs in the limits indicate that the
volume should not be cropped along that axis).

The arrays X, Y, and Z define the coordinates for the volume V. The subvolume
is returned in NV and the coordinates of the subvolume are given in NX, NY, and
NZ.

[Nx,Ny,Nz,Nv] = subvolume(V,limits) assumes the arrays X, Y, and Z are
defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P) where [M,N,P] = size(V).

Nv = subvolume(...) returns only the subvolume.

Examples This example uses a data set that is a collection of MRI slices of a human skull.
The data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and then a subset
of the data is extracted (subvolume).

• The outline of the skull is an isosurface generated as a patch (p1) whose
vertex normals are recalculated to improve the appearance when lighting is
applied (patch, isosurface, isonormals).

• A second patch (p2) with interpolated face color draws the end caps
(FaceColor, isocaps).

• The view of the object is set (view, axis, daspect).

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

• Adding lights to the right and left of the camera illuminates the object
(camlight, lighting).

load mri
D = squeeze(D);
[x,y,z,D] = subvolume(D,[60,80,nan,80,nan,nan]);

subvolume

2-443

p1 = patch(isosurface(x,y,z,D, 5),...
’FaceColor’,’red’,’EdgeColor’,’none’);

isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...

’FaceColor’,’interp’,’EdgeColor’,’none’);
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight right; camlight left; lighting gouraud

See Also isocaps, isonormals, isosurface, reducepatch, reducevolume, smooth3

sum

2-444

2sumPurpose Sum of array elements

Syntax B = sum(A)
B = sum(A,dim)

Description B = sum(A) returns sums along different dimensions of an array.

If A is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as vectors, returning a row
vector of the sums of each column.

If A is a multidimensional array, sum(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.

B = sum(A,dim) sums along the dimension of A specified by scalar dim.

Remarks sum(diag(X)) is the trace of X.

Examples The magic square of order 3 is

M = magic(3)
M =

8 1 6
3 5 7
4 9 2

This is called a magic square because the sums of the elements in each column
are the same.

sum(M) =
15 15 15

as are the sums of the elements in each row, obtained by transposing:

sum(M') =
15 15 15

See Also cumsum, diff, prod, trace

superiorto

2-445

2superiortoPurpose Superior class relationship

Syntax superiorto('class1','class2',...)

Description The superiorto function establishes a hierarchy that determines the order in
which MATLAB calls object methods.

superiorto('class1','class2',...) invoked within a class constructor
method (say myclass.m) indicates that myclass's method should be invoked if
a function is called with an object of class myclass and one or more objects of
class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of class
'class_c'. Also suppose the constructor class_c.m contains the statement:
superiorto('class_a'). Then e = fun(a,c) or e = fun(c,a) invokes
class_c/fun.

If a function is called with two objects having an unspecified relationship, the
two objects are considered to have equal precedence, and the leftmost object’s
method is called. So, fun(b,c) calls class_b/fun, while fun(c,b) calls
class_c/fun.

See Also inferiorto

support

2-446

2supportPurpose Open MathWorks Technical Support Web page

Syntax support

Description support opens your web browser to The MathWorks Technical Support Web
page at http://www.mathworks.com/support.

This page contains the following items:

• A Solution Search Engine

• The “Virtual Technical Support Engineer” that, through a series of
questions, determines possible solutions to the problems you are
experiencing

• Technical Notes

• Tutorials

• Bug fixes and patches

See Also web

surf, surfc

2-447

2surf, surfcPurpose 3-D shaded surface plot

Syntax surf(Z)
surf(X,Y,Z)
surf(X,Y,Z,C)
surf(...,'PropertyName',PropertyValue)
surfc(...)
h = surf(...)
h = surfc(...)

Description Use surf and surfc to view mathematical functions over a rectangular region.
surf and surfc create colored parametric surfaces specified by X, Y, and Z, with
color specified by Z or C.

surf(Z) creates a a three-dimensional shaded surface from the z components
in matrix Z, using x = 1:n and y = 1:m, where [m,n] = size(Z). The height,
Z, is a single-valued function defined over a geometrically rectangular grid. Z
specifies the color data as well as surface height, so color is proportional to
surface height.

surf(X,Y,Z) creates a shaded surface using Z for the color data as well as
surface height. X and Y are vectors or matrices defining the x and y components
of a surface. If X and Y are vectors, length(X) = n and length(Y) = m, where
[m,n] = size(Z). In this case, the vertices of the surface faces are

triples.

surf(X,Y,Z,C) creates a shaded surface, with color defined by C. MATLAB
performs a linear transformation on this data to obtain colors from the current
colormap.

surf(...,'PropertyName',PropertyValue) specifies surface properties along
with the data.

surfc(...) draws a contour plot beneath the surface.

h = surf(...) and h = surfc(...) return a handle to a surface graphics
object.

X j() Y i() Z i j,(), ,()

surf, surfc

2-448

Algorithm Abstractly, a parametric surface is parametrized by two independent
variables, i and j, which vary continuously over a rectangle; for example,
1 ≤ i ≤ m and 1 ≤ j ≤ n. The three functions, x(i,j), y(i,j), and z(i,j),
specify the surface. When i and j are integer values, they define a rectangular
grid with integer grid points. The functions x(i,j), y(i,j), and z(i,j)
become three m-by-n matrices, X, Y and Z. surface color is a fourth function,
c(i,j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected to its four
nearest neighbors.

 i–1,j
 |

i,j–1 – i,j – i,j+1
 |
 i+1,j

This underlying rectangular grid induces four-sided patches on the surface. To
express this another way, [X(:) Y(:) Z(:)] returns a list of triples specifying
points in 3-space. Each interior point is connected to the four neighbors
inherited from the matrix indexing. Points on the edge of the surface have
three neighbors; the four points at the corners of the grid have only two
neighbors. This defines a mesh of quadrilaterals or a quad-mesh.

Surface color can be specified in two different ways – at the vertices or at the
centers of each patch. In this general setting, the surface need not be a
single-valued function of x and y. Moreover, the four-sided surface patches
need not be planar. For example, you can have surfaces defined in polar,
cylindrical, and spherical coordinate systems.

The shading function sets the shading. If the shading is interp, C must be the
same size as X, Y, and Z; it specifies the colors at the vertices. The color within
a surface patch is a bilinear function of the local coordinates. If the shading is
faceted (the default) or flat, C(i,j) specifies the constant color in the surface
patch:

(i,j) – (i,j+1)
| C(i,j) |

(i+1,j) – (i+1,j+1)

surf, surfc

2-449

In this case, C can be the same size as X, Y, and Z and its last row and column
are ignored, Alternatively, its row and column dimensions can be one less than
those of X, Y, and Z.

The surf and surfc functions specify the view point using view(3).

The range of X, Y, and Z, or the current setting of the axes XLimMode, YLimMode,
and ZLimMode properties (also set by the axis function) determine the axis
labels.

The range of C, or the current setting of the axes CLim and ClimMode properties
(also set by the caxis function) determine the color scaling. The scaled color
values are used as indices into the current colormap.

Examples Display a surface and contour plot of the peaks surface.

[X,Y,Z] = peaks(30);
surfc(X,Y,Z)
colormap hsv
axis([−3 3 −3 3 −10 5])

Color a sphere with the pattern of +1s and -1s in a Hadamard matrix.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−10

−5

0

5

surf, surfc

2-450

k = 5;
n = 2^k–1;
[x,y,z] = sphere(n);
c = hadamard(2^k);
surf(x,y,z,c);
colormap([1 1 0; 0 1 1])
axis equal

See Also axis, caxis, colormap, contour, mesh, pcolor, shading, view

Properties for surface graphics objects

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

surf2patch

2-451

2surf2patchPurpose Convert surface data to patch data

Syntax fvc = surf2patch(h)
fvc = surf2patch(Z)
fvc = surf2patch(Z,C)
fvc = surf2patch(X,Y,Z)
fvc = surf2patch(X,Y,Z,C)
fvc = surf2patch(...,'triangles')
[f,v,c] = surf2patch(...)

Description fvc = surf2patch(h) converts the geometry and color data from the surface
object identified by the handle h into patch format and returns the face, vertex,
and color data in the struct fvc. You can pass this struct directly to the patch
command.

fvc = surf2patch(Z) calculates the patch data from the surface’s ZData
matrix Z.

fvc = surf2patch(Z,C) calculates the patch data from the surface’s ZData and
CData matrices Z and C.

fvc = surf2patch(X,Y,Z) calculates the patch data from the surface’s XData,
YData, and ZData matrices X, Y, and Z.

fvc = surf2patch(X,Y,Z,C) calculates the patch data from the surface’s
XData, YData, ZData, and CData matrices X, Y, Z, and C.

fvc = surf2patch(...,'triangles') creates triangular faces instead of the
quadrilaterals that compose surfaces.

[f,v,c] = surf2patch(...) returns the face, vertex, and color data in the
three arrays f, v, and c instead of a struct.

Examples The first example uses the sphere command to generate the XData, YData, and
ZData of a surface, which is then converted to a patch. Note that the ZData (z)
is passed to surf2patch as both the third and fourth arguments – the third
argument is the ZData and the fourth argument is taken as the CData. This is
because the patch command does not automatically use the z-coordinate data
for the color data, as does the surface command.

surf2patch

2-452

Also, because patch is a low-level command, you must set the view to 3-D and
shading to faceted to produce the same results produced by the surf
command.

[x y z] = sphere;
patch(surf2patch(x,y,z,z));
shading faceted; view(3)

In the second example surf2patch calculates face, vertex, and color data from
a surface whose handle has been passed as an argument.

s = surf(peaks);
pause
patch(surf2patch(s));
delete(s)
shading faceted; view(3)

See Also patch, reducepatch, shrinkfaces, surface, surf

surface

2-453

2surfacePurpose Create surface object

Syntax surface(Z)
surface(Z,C)
surface(X,Y,Z)
surface(X,Y,Z,C)
surface(...'PropertyName',PropertyValue,...)
h = surface(...)

Description surface is the low-level function for creating surface graphics objects. surfaces
are plots of matrix data created using the row and column indices of each
element as the x- and y-coordinates and the value of each element as the
z-coordinate.

surface(Z) plots the surface specified by the matrix Z. Here, Z is a
single-valued function, defined over a geometrically rectangular grid.

surface(Z,C) plots the surface specified by Z and colors it according to the
data in C (see “Examples”).

surface(X,Y,Z) uses C = Z, so color is proportional to surface height above the
x-y plane.

surface(X,Y,Z,C) plots the parametric surface specified by X, Y and Z, with
color specified by C.

surface(x,y,Z), surface(x,y,Z,C) replaces the first two matrix arguments
with vectors and must have length(x) = n and length(y) = m where
[m,n] = size(Z). In this case, the vertices of the surface facets are the triples
(x(j),y(i),Z(i,j)). Note that x corresponds to the columns of Z and y
corresponds to the rows of Z. For a complete discussion of parametric surfaces,
see the surf function.

surface(...'PropertyName',PropertyValue,...) follows the X, Y, Z, and C
arguments with property name/property value pairs to specify additional
surface properties. These properties are described in the “Surface Properties”
section.

h = surface(...) returns a handle to the created surface object.

surface

2-454

Remarks Unlike high-level area creation functions, such as surf or mesh, surface does
not respect the settings of the figure and axes NextPlot properties. It simply
adds the surface object to the current axes.

If you do not specify separate color data (C), MATLAB uses the matrix (Z) to
determine the coloring of the surface. In this case, color is proportional to
values of Z. You can specify a separate matrix to color the surface
independently of the data defining the area of the surface.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see set and get for examples of how to specify these
data types).

surface provides convenience forms that allow you to omit the property name
for the XData, YData, ZData, and CData properties. For example,

surface('XData',X,'YData',Y,'ZData',Z,'CData',C)

is equivalent to:

surface(X,Y,Z,C)

When you specify only a single matrix input argument,

surface(Z)

MATLAB assigns the data properties as if you specified,

surface('XData',[1:size(Z,2)],...
'YData',[1:size(Z,1)],...
'ZData',Z,...
'CData',Z)

The axis, caxis, colormap, hold, shading, and view commands set graphics
properties that affect surfaces. You can also set and query surface property
values after creating them using the set and get commands.

Example This example creates a surface using the peaks M-file to generate the data, and
colors it using the clown image. The ZData is a 49-by-49 element matrix, while
the CData is a 200-by-320 matrix. You must set the surface’s FaceColor to
texturemap to use ZData and CData of different dimensions.

load clown
surface(peaks,flipud(X),...

surface

2-455

'FaceColor','texturemap',...
'EdgeColor','none',...
'CDataMapping','direct')

colormap(map)
view(-35,45)

Note the use of the surface(Z,C) convenience form combined with property
name/property value pairs.

Since the clown data (X) is typically viewed with the image command, which
MATLAB normally displays with 'ij' axis numbering and direct
CDataMapping, this example reverses the data in the vertical direction using
flipud and sets the CDataMapping property to direct.

See Also ColorSpec, mesh, patch, pcolor, surf

surface

2-456

Object
Hierarchy

Setting Default Properties
You can set default surface properties on the axes, figure, and root levels.

set(0,'DefaultSurfaceProperty',PropertyValue...)
set(gcf,'DefaultSurfaceProperty',PropertyValue...)
set(gca,'DefaultSurfaceProperty',PropertyValue...)

Where Property is the name of the surface property whose default value you
want to set and PropertyValue is the value you are specifying. Use set and get
to access the surface properties.

Property List The following table lists all surface properties and provides a brief description
of each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Data Defining the Object

XData The x-coordinates of the vertices of
the surface

Values: vector or matrix

YData The y-coordinates of the vertices of
the surface

Values: vector or matrix

surface

2-457

ZData The z-coordinates of the vertices of
the surface

Values: matrix

Specifying Color

CData Color data Values: scalar, vector, or
matrix
Default: [] empty matrix

CDataMapping Controls mapping of CData to
colormap

Values: scaled, direct
Default: scaled

EdgeColor Color of face edges Values: ColorSpec, none,
flat, interp
Default: ColorSpec

FaceColor Color of face Values: ColorSpec, none,
flat, interp
Default: ColorSpec

MarkerEdgeColor Color of marker or the edge color for
filled markers

Values: ColorSpec, none,
auto
Default: auto

MarkerFaceColor Fill color for markers that are closed
shapes

Values: ColorSpec, none,
auto
Default: none

Specifying Transparency

AlphaData The transparency data m-by-n matrix of double or
uint8

AlphaDataMapping Transparency mapping method none, direct, scaled
Default: scaled

EdgeAlpha Transparency of the edges of patch
faces

scalar, flat, interp
Default: 1 (opaque)

Property Name Property Description Property Value

surface

2-458

FaceAlpha Transparency of the patch face scalar, flat, interp,
texture
Default: 1 (opaque)

Controlling the Effects of Lights

AmbientStrength Intensity of the ambient light Values: scalar >=0 and <=1
Default: 0.3

BackFaceLighting Controls lighting of faces pointing
away from camera

Values: unlit, lit,
reverselit
Default: reverselit

DiffuseStrength Intensity of diffuse light Values: scalar >=0 and <=1
Default: 0.6

EdgeLighting Method used to light edges Values: none, flat, gouraud,
phong
Default: none

FaceLighting Method used to light edges Values: none, flat, gouraud,
phong
Default: none

NormalMode MATLAB-generated or user-specified
normal vectors

Values: auto, manual
Default: auto

SpecularColorReflectanc
e

Composite color of specularly
reflected light

Values: scalar 0 to 1
Default: 1

SpecularExponent Harshness of specular reflection Values: scalar >= 1
Default: 10

SpecularStrength Intensity of specular light Values: scalar >=0 and <=1
Default: 0.9

VertexNormals Vertex normal vectors Values: matrix

Property Name Property Description Property Value

surface

2-459

Defining Edges and Markers

LineStyle Select from five line styles. Values: −, −−, :, −., none
Default: −

LineWidth The width of the edge in points Values: scalar
Default: 0.5 points

Marker Marker symbol to plot at data points Values: see Marker property
Default: none

MarkerSize Size of marker in points Values: size in points
Default: 6

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
surface (useful for animation)

Values: normal, none, xor,
background
Default: normal

MeshStyle Specifies whether to draw all edge
lines or just row or column edge lines

Values: both, row, column
Defaults: both

SelectionHighlight Highlight surface when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the surface visible or invisible Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the the
surface’s handle is visible to other
functions

Values: on, callback, off
Default: on

HitTest Determines if the surface can become
the current object (see the figure
CurrentObject property)

Values: on, off
Default: on

Property Name Property Description Property Value

surface

2-460

Properties Related to Callback Routine Execution

BusyAction Specifies how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Defines a callback routine that
executes when a mouse button is
pressed on over the surface

Values: string
Default: '' (empty string)

CreateFcn Defines a callback routine that
executes when an surface is created

Values: string
Default: '' (empty string)

DeleteFcn Defines a callback routine that
executes when the surface is deleted
(via close or delete)

Values: string
Default: '' (empty string)

Interruptible Determines if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu Associates a context menu with the
surface

Values: handle of a
uicontextmenu

General Information About the Surface

Children Surface objects have no children Values: [] (empty matrix)

Parent The parent of a surface object is
always an axes object

Value: axes handle

Selected Indicates whether the surface is in a
“selected” state.

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'surface'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Property Name Property Description Property Value

Surface Properties

2-461

2Surface PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Settingcreating_plots Default
Property Values.

Surface
Property
Descriptions

This section lists property names along with the types of values each accepts.
Curly braces { } enclose default values.

AlphaData m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData can be of class
double or uint8.

MATLAB determines the transparency in one of three ways:

• Using the elements of AlphaData as transparency values (AlphaDataMapping
set to none).

• Using the elements of AlphaData as indices into the current alphamap
(AlphaDataMapping set to direct).

• Scaling the elements of AlphaData to range between the minimum and
maximum values of the axes ALim property (AlphaDataMapping set to
scaled, the default).

AlphaDataMapping none | direct | {scaled}

Transparency mapping method. This property determines how MATLAB
interprets indexed alpha data. This property can be any of the following:

• none - The transparency values of AlphaData are between 0 and 1 or are
clamped to this range (the default).

• scaled - Transform the AlphaData to span the portion of the alphamap
indicated by the axes ALim property, linearly mapping data values to alpha
values.

• direct - use the AlphaData as indices directly into the alphamap. When not
scaled, the data are usually integer values ranging from 1 to
length(alphamap). MATLAB maps values less than 1 to the first alpha

Surface Properties

2-462

value in the alphamap, and values greater than length(alphamap) to the
last alpha value in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array unit8 integers, then the
indexing begins at 0 (i.e., MATLAB maps a value of 0 to the first alpha value
in the alphamap).

AmbientStrength scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire scene. You
must have at least one visible light object in the axes for the ambient light to
be visible. The axes AmbientLightColor property sets the color of the ambient
light, which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular contribution of light
objects. See the surface DiffuseStrength and SpecularStrength properties.

BackFaceLighting unlit | lit | reverselit

Face lighting control. This property determines how faces are lit when their
vertex normals point away from the camera.

• unlit – face is not lit

• lit – face lit in normal way

• reverselit – face is lit as if the vertex pointed towards the camera

This property is useful for discriminating between the internal and external
surfaces of an object. See the Using MATLAB Graphics manual for an example.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routines always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

Surface Properties

2-463

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the surface object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

CData matrix

Vertex colors. A matrix containing values that specify the color at every point
in ZData. If you set the FaceColor property to texturemap, CData does not need
to be the same size as ZData. In this case, MATLAB maps CData to conform to
the surface defined by ZData.

You can specify color as indexed values or true color. Indexed color data
specifies a single value for each vertex. These values are either scaled to map
linearly into the current colormap (see caxis) or interpreted directly as indices
into the colormap, depending on the setting of the CDataMapping property.

True color defines an RGB value for each vertex. If the coordinate data (XData
for example) are contained in m-by-n matrices, then CDatamust be an m-by-n-3
array. The first page contains the red components, the second the green
components, and the third the blue components of the colors.

On computer displays that cannot display true color (e.g., 8-bit displays),
MATLAB uses dithering to approximate the RGB triples using the colors in the
figure’s Colormap and Dithermap. By default, Dithermap uses the
colorcube(64) colormap. You can also specify your own dithermap.

CDataMapping {scaled} | direct

Direct or scaled color mapping. This property determines how MATLAB
interprets indexed color data used to color the surface. (If you use true color
specification for CData, this property has no effect.)

• scaled – transform the color data to span the portion of the colormap
indicated by the axes CLim property, linearly mapping data values to colors.
See the caxis reference page for more information on this mapping.

• direct – use the color data as indices directly into the colormap. The color
data should then be integer values ranging from 1 to length(colormap).

Surface Properties

2-464

MATLAB maps values less than 1 to the first color in the colormap, and
values greater than length(colormap) to the last color in the colormap.
Values with a decimal portion are fixed to the nearest, lower integer.

Children matrix of handles

Always the empty matrix; surface objects have no children.

Clipping {on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does not display any
portion of the surface that is outside the axes rectangle.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a surface object. You
must define this property as a default value for surfaces. For example, the
statement,

set(0,'DefaultSurfaceCreateFcn',...
'set(gcf,''DitherMap'',my_dithermap)')

defines a default value on the root level that sets the figure DitherMap property
whenever you create a surface object. MATLAB executes this routine after
setting all surface properties. Setting this property on an existing surface
object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

DeleteFcn string

Delete surface callback routine. A callback routine that executes when you
delete the surface object (e.g., when you issue a delete command or clear the
axes or figure). MATLAB executes the routine before destroying the object’s
properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

DiffuseStrength scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the diffuse
component of the light falling on the surface. Diffuse light comes from light
objects in the axes.

Surface Properties

2-465

You can also set the intensity of the ambient and specular components of the
light on the surface object. See the AmbientStrength and SpecularStrength
properties.

EdgeAlpha {scalar = 1} | flat | interp

Transparency of the surface edges. This property can be any of the following:

• scalar - A single non-Nan scalar value between 0 and 1 that controls the
transparency of all the edges of the object. 1 (the default) is fully opaque and
0 means completely transparent.

• flat - The alpha data (AlphaData) value for the first vertex of the face
determines the transparency of the edges.

• interp - Linear interpolation of the alpha data (AlphaData) values at each
vertex determine the transparency of the edge.

Note that you must specify AlphaData as a matrix equal in size to ZData to use
flat or interp EdgeAlpha.

EdgeColor {ColorSpec} | none | flat | interp

Color of the surface edge. This property determines how MATLAB colors the
edges of the individual faces that make up the surface:

• ColorSpec — A three-element RGB vector or one of MATLAB’s predefined
names, specifying a single color for edges. The default EdgeColor is black.
See ColorSpec for more information on specifying color.

• none — Edges are not drawn.

• flat — The CData value of the first vertex for a face determines the color of
each edge.

Vertex controlling the

Direction of

Direction ofcolor of adjacent edges

increasing y data

increasing x data

Surface Properties

2-466

• interp — Linear interpolation of the CData values at the face vertices
determines the edge color.

EdgeLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of light objects on surface edges. Choices are:

• none – Lights do not affect the edges of this object.

• flat – The effect of light objects is uniform across each edge of the surface.

• gouraud – The effect of light objects is calculated at the vertices and then
linearly interpolated across the edge lines.

• phong – The effect of light objects is determined by interpolating the vertex
normals across each edge line and calculating the reflectance at each pixel.
Phong lighting generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase surface objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none — Do not erase the surface when it is moved or destroyed. While the
object is still visible on the screen after erasing with EraseMode none, you
cannot print it because MATLAB stores no information about its former
location.

• xor — Draw and erase the surface by performing an exclusive OR (XOR)
with each pixel index of the screen behind it. Erasing the surface does not
damage the color of the objects behind it. However, surface color depends on
the color of the screen behind it and is correctly colored only when over the
axes background Color, or the figure background Color if the axes Color is
set to none.

Surface Properties

2-467

• background — Erase the surface by drawing it in the axes’ background
Color, or the figure background Color if the axes Color is set to none. This
damages objects that are behind the erased object, but surface objects are
always properly colored.

Printing with Non-normal Erase Modes. MATLAB always prints figures as if the
EraseMode of all objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers of colors (e.g.,
XORing a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing non-normal mode objects.

FaceAlpha {scalar = 1} | flat | interp | texturemap

Transparency of the surface faces. This property can be any of the following:

• scalar - A single non-NaN scalar value between 0 and 1 that controls the
transparency of all the faces of the object. 1 (the default) is fully opaque and
0 is completely transparent (invisible).

• flat - The values of the alpha data (AlphaData) determine the transparency
for each face. The alpha data at the first vertex determines the transparency
of the entire face.

• interp - Bilinear interpolation of the alpha data (AlphaData) at each vertex
determine the transparency of each face.

• texturemap – Use transparency for the texturemap.

Note that you must specify AlphaData as a matrix equal in size to ZData to use
flat or interp FaceAlpha.

FaceColor ColorSpec | none | {flat} | interp

Color of the surface face. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of MATLAB’s predefined
names, specifying a single color for faces. See ColorSpec for more
information on specifying color.

• none — Do not draw faces. Note that edges are drawn independently of faces.

Surface Properties

2-468

• flat — The values of CData determine the color for each face of the surface.
The color data at the first vertex determines the color of the entire face.

• interp — Bilinear interpolation of the values at each vertex (the CData)
determines the coloring of each face.

• texturemap — Texture map the CData to the surface. MATLAB transforms
the color data so that it conforms to the surface. (See the texture mapping
example.)

FaceLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of light objects on the surface. Choices are:

• none – Lights do not affect the faces of this object.

• flat – The effect of light objects is uniform across the faces of the surface.
Select this choice to view faceted objects.

• gouraud – The effect of light objects is calculated at the vertices and then
linearly interpolated across the faces. Select this choice to view curved
surfaces.

• phong – The effect of light objects is determined by interpolating the vertex
normals across each face and calculating the reflectance at each pixel. Select
this choice to view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. This property is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Surface Properties

2-469

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the surface can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the surface. If HitTest is off, clicking
on the surface selects the object below it (which maybe the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a surface callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the BusyAction property for
related information.

Surface Properties

2-470

LineStyle {-} | -- | : | -. | none

Edge line type. This property determines the line style used to draw surface
edges. The available line styles are shown in this table.

LineWidth scalar

Edge line width. The width of the lines in points used to draw surface edges.
The default width is 0.5 points (1 point = 1/72 inch).

Marker marker symbol (see table)

Marker symbol. The Marker property specifies symbols that display at vertices.
You can set values for the Marker property independently from the LineStyle
property.

You can specify these markers.

Symbol Line Style

− solid line (default)

−− dashed line

: dotted line

−. dash-dot line

none no line

Marker Specifier Description

+ plus sign

o circle

* asterisk

. point

x cross

s square

d diamond

Surface Properties

2-471

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).

• ColorSpec defines a single color to use for the edge (see ColorSpec for more
information).

• none specifies no color, which makes nonfilled markers invisible.

• auto uses the same color as the EdgeColor property.

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles).

• ColorSpec defines a single color to use for all marker on the surface (see
ColorSpec for more information).

• none makes the interior of the marker transparent, allowing the background
to show through.

• auto uses the CData for the vertex located by the marker to determine the
color.

MarkerSize size in points

Marker size. A scalar specifying the marker size, in points. The default value
for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB draws the
point marker at 1/3 the specified marker size.

^ upward pointing triangle

v downward pointing triangle

> right pointing triangle

< left pointing triangle

p five-pointed star (pentagram)

h six-pointed star (hexagram)

none no marker (default)

Marker Specifier Description

Surface Properties

2-472

MeshStyle {both} | row | column

Row and column lines. This property specifies whether to draw all edge lines
or just row or column edge lines.

• both draws edges for both rows and columns.

• row draws row edges only.

• column draws column edges only.

NormalMode {auto} | manual

MATLAB -generated or user-specified normal vectors. When this property is
auto, MATLAB calculates vertex normals based on the coordinate data. If you
specify your own vertex normals, MATLAB sets this property to manual and
does not generate its own data. See also the VertexNormals property.

Parent handle

Surface’s parent object. The parent of a surface object is the axes in which it is
displayed. You can move a surface object to another axes by setting this
property to the handle of the new parent.

Selected on | {off}

Is object selected? When this property is on, MATLAB displays a dashed
bounding box around the surface if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this property,
allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing a dashed bounding box around the
surface. When SelectionHighlight is off, MATLAB does not draw the
handles.

SpecularColorReflectance scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the color of the
specularly reflected light depends on both the color of the object from which it
reflects and the color of the light source. When set to 1, the color of the
specularly reflected light depends only on the color or the light source (i.e., the
light object Color property). The proportions vary linearly for values in
between.

Surface Properties

2-473

SpecularExponent scalar >= 1

Harshness of specular reflection. This property controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the specular
component of the light falling on the surface. Specular light comes from light
objects in the axes.

You can also set the intensity of the ambient and diffuse components of the
light on the surface object. See the AmbientStrength and DiffuseStrength
properties. Also see the material function.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of the graphics object. The class of the graphics object. For surface objects,
Type is always the string 'surface'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the surface. Assign this property the handle of a
uicontextmenu object created in the same figure as the surface. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the surface.

UserData matrix

User-specified data. Any matrix you want to associate with the surface object.
MATLAB does not use this data, but you can access it using the set and get
commands.

VertexNormals vector or matrix

Surface normal vectors. This property contains the vertex normals for the
surface. MATLAB generates this data to perform lighting calculations. You can
supply your own vertex normal data, even if it does not match the coordinate
data. This can be useful to produce interesting lighting effects.

Surface Properties

2-474

Visible {on} | off

Surface object visibility. By default, all surfaces are visible. When set to off,
the surface is not visible, but still exists and you can query and set its
properties.

XData vector or matrix

X-coordinates. The x-position of the surface points. If you specify a row vector,
surface replicates the row internally until it has the same number of columns
as ZData.

YData vector or matrix

Y-coordinates. The y-position of the surface points. If you specify a row vector,
surface replicates the row internally until it has the same number of rows as
ZData.

ZData matrix

Z-coordinates. Z-position of the surface points. See the Description section for
more information.

surfl

2-475

2surflPurpose Surface plot with colormap-based lighting

Syntax surfl(Z)
surfl(X,Y,Z)
surfl(...,'light')
surfl(...,s)
surfl(X,Y,Z,s,k)
h = surfl(...)

Description The surfl function displays a shaded surface based on a combination of
ambient, diffuse, and specular lighting models.

surfl(Z) and surfl(X,Y,Z) create three-dimensional shaded surfaces using
the default direction for the light source and the default lighting coefficients for
the shading model. X, Y, and Z are vectors or matrices that define the x, y, and
z components of a surface.

surfl(...,'light') produces a colored, lighted surface using a MATLAB
light object. This produces results different from the default lighting method,
surfl(...,'cdata'), which changes the color data for the surface to be the
reflectance of the surface.

surfl(...,s) specifies the direction of the light source. s is a two- or
three-element vector that specifies the direction from a surface to a light
source. s = [sx sy sz] or s = [azimuth elevation]. The default s is 45˚
counterclockwise from the current view direction.

surfl(X,Y,Z,s,k) specifies the reflectance constant. k is a four-element vector
defining the relative contributions of ambient light, diffuse reflection, specular
reflection, and the specular shine coefficient. k = [ka kd ks shine] and
defaults to [.55,.6,.4,10].

h = surfl(...) returns a handle to a surface graphics object.

Remarks For smoother color transitions, use colormaps that have linear intensity
variations (e.g., gray, copper, bone, pink).

The ordering of points in the X, Y, and Z matrices define the inside and outside
of parametric surfaces. If you want the opposite side of the surface to reflect the

surfl

2-476

light source, use surfl(X',Y',Z'). Because of the way surface normal vectors
are computed, surfl requires matrices that are at least 3-by-3.

Examples View peaks using colormap-based lighting.

[x,y] = meshgrid(–3:1/8:3);
z = peaks(x,y);
surfl(x,y,z);
shading interp
colormap(gray);
axis([–3 3 –3 3 –8 8])

To plot a lighted surface from a view direction other than the default.

view([10 10])
grid on
hold on
surfl(peaks)
shading interp
colormap copper

surfl

2-477

hold off

See Also colormap, shading, light

surfnorm

2-478

2surfnormPurpose Compute and display 3-D surface normals

Syntax surfnorm(Z)
surfnorm(X,Y,Z)
[Nx,Ny,Nz] = surfnorm(...)

Description The surfnorm function computes surface normals for the surface defined by X,
Y, and Z. The surface normals are unnormalized and valid at each vertex.
Normals are not shown for surface elements that face away from the viewer.

surfnorm(Z) and surfnorm(X,Y,Z) plot a surface and its surface normals. Z is
a matrix that defines the z component of the surface. X and Y are vectors or
matrices that define the x and y components of the surface.

[Nx,Ny,Nz] = surfnorm(...) returns the components of the
three-dimensional surface normals for the surface.

Remarks The direction of the normals is reversed by calling surfnorm with transposed
arguments:

surfnorm(X',Y',Z')

surfl uses surfnorm to compute surface normals when calculating the
reflectance of a surface.

Algorithm The surface normals are based on a bicubic fit of the data in X, Y, and Z. For
each vertex, diagonal vectors are computed and crossed to form the normal.

Examples Plot the normal vectors for a truncated cone.

[x,y,z] = cylinder(1:10);
surfnorm(x,y,z)
axis([−12 12 −12 12 −0.1 1])

surfnorm

2-479

See Also surf, quiver3

−10
−5

0
5

10

−10
−5

0
5

10

0

0.2

0.4

0.6

0.8

1

svd

2-480

2svdPurpose Singular value decomposition

Syntax s = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)

Description The svd command computes the matrix singular value decomposition.

s = svd(X) returns a vector of singular values.

[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension as X,
with nonnegative diagonal elements in decreasing order, and unitary matrices
U and V so that X = U*S*V'.

[U,S,V] = svd(X,0) produces the “economy size” decomposition. If X is m-by-n
with m > n, then svd computes only the first n columns of U and S is n-by-n.

Examples For the matrix

X =
1 2
3 4
5 6
7 8

the statement

[U,S,V] = svd(X)

produces

U =
-0.1525 -0.8226 -0.3945 -0.3800
-0.3499 -0.4214 0.2428 0.8007
-0.5474 -0.0201 0.6979 -0.4614
-0.7448 0.3812 -0.5462 0.0407

S =
14.2691 0

0 0.6268

svd

2-481

0 0
0 0

V =
-0.6414 0.7672
-0.7672 -0.6414

The economy size decomposition generated by

[U,S,V] = svd(X,0)

produces

U =
-0.1525 -0.8226
-0.3499 -0.4214
-0.5474 -0.0201
-0.7448 0.3812

S =
14.2691 0

0 0.6268
V =

-0.6414 0.7672
-0.7672 -0.6414

Algorithm svd uses LAPACK routines to compute the singular value decomposition.

Diagnostics If the limit of 75 QR step iterations is exhausted while seeking a singular value,
this message appears:

Solution will not converge.

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,

Matrix Routine

Real DGESVD

Complex ZGESVD

svd

2-482

LAPACK User’s Guide (http://www.netlib.org/lapack/lug/
lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

svds

2-483

2svdsPurpose A few singular values

Syntax s = svds(A)
s = svds(A,k)
s = svds(A,k,0)
[U,S,V] = svds(A,...)

Description svds(A) computes the five largest singular values and associated singular
vectors of the matrix A.

svds(A,k) computes the k largest singular values and associated singular
vectors of the matrix A.

svds(A,k,0) computes the k smallest singular values and associated singular
vectors.

With one output argument, s is a vector of singular values. With three output
arguments and if A is m-by-n:

• U is m-by-k with orthonormal columns

• S is k-by-k diagonal

• V is n-by-k with orthonormal columns

• U*S*V' is the closest rank k approximation to A

Algorithm svds(A,k) uses eigs to find the k largest magnitude eigenvalues and
corresponding eigenvectors of B = [0 A; A' 0].

svds(A,k,0) uses eigs to find the 2k smallest magnitude eigenvalues and
corresponding eigenvectors of B = [0 A; A' 0], and then selects the k positive
eigenvalues and their eigenvectors.

Example west0479 is a real 479-by-479 sparse matrix. svd calculates all 479 singular
values. svds picks out the largest and smallest singular values.

load west0479
s = svd(full(west0479))
sl = svds(west0479,4)
ss = svds(west0479,6,0)

svds

2-484

These plots show some of the singular values of west0479 as computed by svd
and svds.

The largest singular value of west0479 can be computed a few different ways:

svds(west0479,1) =
 3.189517598808622e+05

max(svd(full(west0479))) =
 3.18951759880862e+05

norm(full(west0479)) =
 3.189517598808623e+05

and estimated:

normest(west0479) =
 3.189385666549991e+05

See Also svd, eigs

1 2 3 4
3.165

3.17

3.175

3.18

3.185

3.19
x 10

5 4 largest singular values of west0479

svds(A,4)
svd(A)

1 2 3 4 5 6
0

1

2

3

4

5

6
x 10

−5 6 smallest singular values of west0479

svds(A,6,0)
svd(A)

switch

2-485

2switchPurpose Switch among several cases based on expression

Syntax switch switch_expr
case case_expr

statement,...,statement
case {case_expr1,case_expr2,case_expr3,...}

statement,...,statement
...
otherwise

statement,...,statement
end

Discussion The switch statement syntax is a means of conditionally executing code. In
particular, switch executes one set of statements selected from an arbitrary
number of alternatives. Each alternative is called a case, and consists of:

• The case statement

• One or more case expressions

• One or more statements

In its basic syntax, switch executes the statements associated with the first
case where switch_expr == case_expr. When the case expression is a cell
array (as in the second case above), the case_expr matches if any of the
elements of the cell array match the switch expression. If no case expression
matches the switch expression, then control passes to the otherwise case (if it
exists). After the case is executed, program execution resumes with the
statement after the end.

The switch_expr can be a scalar or a string. A scalar switch_expr matches a
case_expr if switch_expr==case_expr. A string switch_expr matches a
case_expr if strcmp(switch_expr,case_expr) returns 1 (true).

Note for C Programmers Unlike the C language switch construct,
MATLAB’s switch does not “fall through.” That is, switch executes only the
first matching case, subsequent matching cases do not execute. Therefore,
break statements are not used.

switch

2-486

Examples To execute a certain block of code based on what the string, method, is set to,

method = 'Bilinear';

switch lower(method)
case {'linear','bilinear'}

 disp('Method is linear')
case 'cubic'

 disp('Method is cubic')
case 'nearest'

 disp('Method is nearest')
otherwise

 disp('Unknown method.')
end

Method is linear

See Also case, end, if, otherwise, while

symamd

2-487

2symamdPurpose Symmetric approximate minimum degree permutation

Syntax p = symamd(S)
p = symamd(S,knobs)
[p,stats] = symamd(S)
[p,stats] = symamd(S,knobs)

Description p = symamd(S) for a symmetric positive definite matrix S, returns the
permutation vector p such that S(p,p) tends to have a sparser Cholesky factor
than S. To find the ordering for S, symamd constructs a matrix M such that
spones(M'*M) = spones (S), and then computes p = colamd(M). The symamd
function may also work well for symmetric indefinite matrices.

S must be square; only the strictly lower triangular part is referenced.

knobs is a scalar. If S is n-by-n, rows and columns with more than knobs*n
entries are removed prior to ordering, and ordered last in the output
permutation p. If the knobs parameter is not present, then
knobs = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and the
validity of the matrix S.

stats(1) Number of dense or empty rows ignored by symamd

stats(2) Number of dense or empty columns ignored by symamd

stats(3) Number of garbage collections performed on the internal data
structure used by symamd (roughly of size
8.4*nnz(tril(S,-1)) + 9n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains duplicate
entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the column
index given by stats(5), or 0 if no such row index exists

stats(7) Number of duplicate and out-of-order row indices

symamd

2-488

Although, MATLAB built-in functions generate valid sparse matrices, a user
may construct an invalid sparse matrix using the MATLAB C or Fortran APIs
and pass it to symamd. For this reason, symamd verifies that S is valid:

• If a row index appears two or more times in the same column, symamd ignores
the duplicate entries, continues processing, and provides information about
the duplicate entries in stats(4:7).

• If row indices in a column are out of order, symamd sorts each column of its
internal copy of the matrix S (but does not repair the input matrix S),
continues processing, and provides information about the out-of-order
entries in stats(4:7).

• If S is invalid in any other way, symamd cannot continue. It prints an error
message, and returns no output arguments (p or stats) .

The ordering is followed by a symmetric elimination tree post-ordering.

Note symamd tends to be faster than symmmd and tends to return a better
ordering.

See Also colamd, colmmd, colperm, spparms, symmmd, symrcm

References The authors of the code for symamd are Stefan I. Larimore and Timothy A. Davis
(davis@cise.ufl.edu), University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge
National Laboratory. Sparse Matrix Algorithms Research at the University of
Florida: http://www.cise.ufl.edu/research/sparse/

symbfact

2-489

2symbfactPurpose Symbolic factorization analysis

Syntax count = symbfact(A)
count = symbfact(A,'col')
count = symbfact(A,'sym')
[count,h,parent,post,R] = symbfact(...)

Description count = symbfact(A) returns the vector of row counts for the upper
triangular Cholesky factor of a symmetric matrix whose upper triangle is that
of A, assuming no cancellation during the factorization. symbfact should be
much faster than chol(A).

count = symbfact(A,'col') analyzes A' *A (without forming it explicitly).

count = symbfact(A,'sym') is the same as count = symbfact(A).

[count,h,parent,post,R] = symbfact(...) has several optional return
values.

See Also chol, etree, treelayout

h Height of the elimination tree

parent The elimination tree itself

post Postordering permutation of the elimination tree

R 0-1 matrix whose structure is that of chol(A)

symmlq

2-490

2symmlqPurpose Symmetric LQ method

Syntax x = symmlq(A,b)
symmlq(A,b,tol)
symmlq(A,b,tol,maxit)
symmlq(A,b,tol,maxit,M)
symmlq(A,b,tol,maxit,M1,M2)
symmlq(A,b,tol,maxit,M1,M2,x0)
symmlq(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = symmlq(A,b,...)
[x,flag,relres] = symmlq(A,b,...)
[x,flag,relres,iter] = symmlq(A,b,...)
[x,flag,relres,iter,resvec] = symmlq(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...)

Description x = symmlq(A,b) attempts to solve the system of linear equations A*x=b for x.
The n-by-n coefficient matrix A must be symmetric but need not be positive
definite. The column vector b must have length n. A can be a function afun
such that afun(x) returns A*x.

If symmlq converges, a message to that effect is displayed. If symmlq fails to
converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual norm(b-A*x)/
norm(b) and the iteration number at which the method stopped or failed.

symmlq(A,b,tol) specifies the tolerance of the method. If tol is [], then
symmlq uses the default, 1e-6.

symmlq(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then symmlq uses the default, min(n,20).

symmlq(A,b,tol,maxit,M) and symmlq(A,b,tol,maxit,M1,M2) use the
symmetric positive definite preconditioner M or M = M1*M2 and effectively solve
the system inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b for y and
then return x = inv(sqrt(M))*y. If M is [] then symmlq applies no
preconditioner. M can be a function that returns M\x.

symmlq(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
symmlq uses the default, an all-zero vector.

symmlq

2-491

symmlq(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...) also returns a
convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...) also
returns the relative residual norm(b-A*x)/norm(b). If flag is 0,
relres <= tol.

[x,flag,relres,iter] = symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
also returns the iteration number at which x was computed, where
0 <= iter <= maxit.

[x,flag,relres,iter,resvec] =
symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...) also returns a vector of
estimates of the symmlq residual norms at each iteration, including
norm(b-A*x0).

Flag Convergence

0 symmlq converged to the desired tolerance tol within
maxit iterations.

1 symmlq iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 symmlq stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during symmlq
became too small or too large to continue computing.

5 Preconditioner M was not symmetric positive definite.

symmlq

2-492

[x,flag,relres,iter,resvec,resveccg] =
symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...) also returns a vector of
estimates of the conjugate gradients residual norms at each iteration.

Examples Example 1.

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50; M1 = spdiags(4*on,0,n,n);

x = symmlq(A,b,tol,maxit,M1,[],[]);
symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Alternatively, use this matrix-vector product function

function y = afun(x,n)
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);

as input to symmlq.

x1 = symmlq(@afun,b,tol,maxit,M1,[],[],n);

Example 2.

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1,-1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, symmlq can handle the indefinite matrix A.

x = symmlq(A,b,1e-6,40);

symmlq

2-493

symmlq converged at iteration 39 to a solution with relative
residual 1.3e-007

See Also bicg, bicgstab, cgs, lsqr, gmres, minres, pcg, qmr

@ (function handle), / (slash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A., “Solution of Sparse Indefinite Systems of Linear
Equations.” SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.

symmmd

2-494

2symmmdPurpose Sparse symmetric minimum degree ordering

Syntax p = symmmd(S)

Description p = symmmd(S) returns a symmetric minimum degree ordering of S. For a
symmetric positive definite matrix S, this is a permutation p such that S(p,p)
tends to have a sparser Cholesky factor than S. Sometimes symmmd works well
for symmetric indefinite matrices too.

Remarks The minimum degree ordering is automatically used by \ and / for the solution
of symmetric, positive definite, sparse linear systems.

Some options and parameters associated with heuristics in the algorithm can
be changed with spparms.

Algorithm The symmetric minimum degree algorithm is based on the column minimum
degree algorithm. In fact, symmmd(A) just creates a nonzero structure K such
that K'*K has the same nonzero structure as A and then calls the column
minimum degree code for K.

Examples Here is a comparison of reverse Cuthill-McKee and minimum degree on the
Bucky ball example mentioned in the symrcm reference page.

B = bucky+4*speye(60);
r = symrcm(B);
p = symmmd(B);
R = B(r,r);
S = B(p,p);
subplot(2,2,1), spy(R), title('B(r,r)')
subplot(2,2,2), spy(S), title('B(s,s)')
subplot(2,2,3), spy(chol(R)), title('chol(B(r,r))')
subplot(2,2,4), spy(chol(S)), title('chol(B(s,s))')

symmmd

2-495

Even though this is a very small problem, the behavior of both orderings is
typical. RCM produces a matrix with a narrow bandwidth which fills in almost
completely during the Cholesky factorization. Minimum degree produces a
structure with large blocks of contiguous zeros which do not fill in during the
factorization. Consequently, the minimum degree ordering requires less time
and storage for the factorization.

See Also colamd, colmmd, colperm, symamd, symrcm

References [1] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

0 20 40 60

0

20

40

60

nz = 240

B(r,r)

0 20 40 60

0

20

40

60

nz = 240

B(s,s)

0 20 40 60

0

20

40

60

nz = 514

chol(B(r,r))

0 20 40 60

0

20

40

60

nz = 360

chol(B(s,s))

symrcm

2-496

2symrcmPurpose Sparse reverse Cuthill-McKee ordering

Syntax r = symrcm(S)

Description r = symrcm(S) returns the symmetric reverse Cuthill-McKee ordering of S.
This is a permutation r such that S(r,r) tends to have its nonzero elements
closer to the diagonal. This is a good preordering for LU or Cholesky
factorization of matrices that come from long, skinny problems. The ordering
works for both symmetric and nonsymmetric S.

For a real, symmetric sparse matrix, S, the eigenvalues of S(r,r) are the same
as those of S, but eig(S(r,r)) probably takes less time to compute than
eig(S).

Algorithm The algorithm first finds a pseudoperipheral vertex of the graph of the matrix.
It then generates a level structure by breadth-first search and orders the
vertices by decreasing distance from the pseudoperipheral vertex. The
implementation is based closely on the SPARSPAK implementation described
by George and Liu.

Examples The statement

B = bucky

uses an M-file in the demos toolbox to generate the adjacency graph of a
truncated icosahedron. This is better known as a soccer ball, a Buckminster
Fuller geodesic dome (hence the name bucky), or, more recently, as a 60-atom
carbon molecule. There are 60 vertices. The vertices have been ordered by
numbering half of them from one hemisphere, pentagon by pentagon; then
reflecting into the other hemisphere and gluing the two halves together. With
this numbering, the matrix does not have a particularly narrow bandwidth, as
the first spy plot shows

subplot(1,2,1), spy(B), title('B')

The reverse Cuthill-McKee ordering is obtained with

p = symrcm(B);
R = B(p,p);

symrcm

2-497

The spy plot shows a much narrower bandwidth.

subplot(1,2,2), spy(R), title('B(p,p)')

This example is continued in the reference pages for symmmd.

The bandwidth can also be computed with

[i,j] = find(B);
bw = max(i-j) + 1

The bandwidths of B and R are 35 and 12, respectively.

See Also colamd, colmmd, colperm, symamd, symmmd

References [1] George, Alan and Joseph Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, 1981.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” to appear in SIAM Journal on Matrix
Analysis, 1992. A slightly expanded version is also available as a technical
report from the Xerox Palo Alto Research Center.

0 20 40 60

0

10

20

30

40

50

60

nz = 180

B

0 20 40 60

0

10

20

30

40

50

60

nz = 180

B(p,p)

symvar

2-498

2symvarPurpose Determine the symbolic variables in an expression

Syntax symvar 'expr'
s = symvar('expr')

Description symvar 'expr' searches the expression, expr, for identifiers other than i, j,
pi, inf, nan, eps, and common functions. symvar displays those variables that
it finds or, if no such variable exists, displays an empty cell array, {}.

s = symvar('expr') returns the variables in a cell array of strings, s. If no
such variable exists, s is an empty cell array.

Examples symvar finds variables beta1 and x, but skips pi and the cos function.

symvar 'cos(pi*x - beta1)'

ans =

 'beta1'
 'x'

See Also findstr

tan, tanh

2-499

2tan, tanhPurpose Tangent and hyperbolic tangent

Syntax Y = tan(X)
Y = tanh(X)

Description The tan and tanh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = tan(X) returns the circular tangent of each element of X.

Y = tanh(X) returns the hyperbolic tangent of each element of X.

Examples Graph the tangent function over the domain and the
hyperbolic tangent function over the domain

x = (-pi/2)+0.01:0.01:(pi/2)-0.01; plot(x,tan(x))
x = -5:0.01:5; plot(x,tanh(x))

The expression tan(pi/2) does not evaluate as infinite but as the reciprocal of
the floating point accuracy eps since pi is only a floating-point approximation
to the exact value of .

π 2⁄– x π 2⁄ ,< <
5– x 5.≤ ≤

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-100

-80

-60

-40

-20

0

20

40

60

80

100

x

y=
ta

n(
x)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y=
ta

nh
(x

)

π

tan, tanh

2-500

Algorithm tan and tanh use these algorithms.

See Also atan, atan2

z()tan z()sin
z()cos

-----------------=

z()tanh z()sinh
z()cosh

--------------------=

tempdir

2-501

2tempdirPurpose Return the name of the system’s temporary directory

Syntax tmp_dir = tempdir

Description tmp_dir = tempdir returns the name of the system’s temporary directory, if
one exists. This function does not create a new directory.

See Opening Temporary Files and Directories for more information.

See Also tempname

tempname

2-502

2tempnamePurpose Unique name for temporary file

Syntax tmp_nam = tempname

Description tmp_nam = tempname returns a unique string, tmp_nam, suitable for use as a
temporary filename.

Note The filename that tempname generates is not guaranteed to be unique;
however, it is likely to be so.

See Opening Temporary Files and Directories for more information.

See Also tempdir

terminal

2-503

2terminalPurpose Set graphics terminal type

Syntax terminal
terminal('type')

Description To add terminal-specific settings (e.g., escape characters, line length), edit the
file terminal.m.

terminal displays a menu of graphics terminal types, prompts for a choice,
then configures MATLAB to run on the specified terminal.

terminal('type') accepts a terminal type string. Valid 'type' strings are
shown in the table.

Type Description

tek401x Tektronix 4010/4014

tek4100 Tektronix 4100

tek4105 Tektronix 4105

retro Retrographics card

sg100 Selanar Graphics 100

sg200 Selanar Graphics 200

vt240tek VT240 & VT340 Tektronix mode

ergo Ergo terminal

graphon Graphon terminal

citoh C.Itoh terminal

xtermtek xterm, Tektronix graphics

wyse Wyse WY-99GT

kermit MS-DOS Kermit 2.23

hp2647 Hewlett-Packard 2647

terminal

2-504

hds Human Designed Systems

Type Description (Continued)

tetramesh

2-505

2tetrameshPurpose Tetrahedron mesh plot

Syntax tetramesh(T,X,c)
tetramesh(T,X)
h = tetramesh(...)
tetramesh(...,'param','value','param','value'...)

Description tetramesh(T,X,c) displays the tetrahedrons defined in the m-by-4 matrix T as
mesh. T is usually the output of delaunayn. A row of T contains indices into X
of the vertices of a tetrahedron. X is an n-by-3 matrix, representing n points in
3 dimension. The tetrahedron colors are defined by the vector C, which is used
as indices into the current colormap.

Note If T is the output of delaunay3, then X is the concatenation of the
delaunay3 input arguments x, y, z interpreted as column vectors, i.e.,
X = [x(:) y(:) z(:)].

tetramesh(T,X) uses C = 1:m as the color for the m tetrahedrons. Each
tetrahedron has a different color (modulo the number of colors available in the
current colormap).

h = tetramesh(...) returns a vector of tetrahedron handles. Each element of
h is a handle to the set of patches forming one tetrahedron. You can use these
handles to view a particular tetrahedron by turning the patch 'Visible'
property 'on' or 'off'.

tetramesh(...,'param','value','param','value'...) allows additional
patch property name/property value pairs to be used when displaying the
tetrahedrons. For example, the default transparency parameter is set to 0.9.
You can overwrite this value by using the property name/property value pair
('FaceAlpha',value) where value is a number between 0 and 1. See Patch
Properties for information about the available properties.

Examples Generate a 3-dimensional Delaunay tesselation, then use tetramesh to
visualize the tetrahedrons that form the corresponding simplex.

d = [-1 1];

tetramesh

2-506

[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =
 9 1 5 6
 3 9 1 5
 2 9 1 6
 2 3 9 4
 2 3 9 1
 7 9 5 6
 7 3 9 5
 8 7 9 6
 8 2 9 6
 8 2 9 4
 8 3 9 4
 8 7 3 9

tetramesh(Tes,X);camorbit(20,0)

tetramesh

2-507

See Also delaunayn, patch, Patch Properties, trimesh, trisurf

texlabel

2-508

2texlabelPurpose Produce TeX format from character string

Syntax texlabel(f)
texlabel(f,'literal')

Description texlabel(f) converts the MATLAB expression f into the TeX equivalent for
use in text strings. It processes Greek variable names (e.g., lambda, delta, etc.)
into a string that displays as actual Greek letters.

texlabel(f,'literal') prints Greek variable names as literals.

If the string is too long to fit into a figure window, then the center of the
expression is replaced with a tilde ellipsis (~~~).

Examples You can use texlabel as an argument to the title, xlabel, ylabel, zlabel,
and text commands. For example,

title(texlabel('sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2)'))

By default, texlabel translates Greek variable names to the equivalent Greek
letter. You can select literal interpretation by including the literal argument.
For example, compare these two commands.

text(.5,.5,...
texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)'))

text(.25,.25,...
texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)','literal'))

texlabel

2-509

See Also text, title, xlabel, ylabel, zlabel, the text String property

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
12

3/2/π − π δ2/3

lambda123/2/pi − pi delta2/3

text

2-510

2textPurpose Create text object in current axes

Syntax text(x,y,'string')
text(x,y,z,'string')
text(...'PropertyName',PropertyValue...)
h = text(...)

Description text is the low-level function for creating text graphics objects. Use text to
place character strings at specified locations.

text(x,y,'string') adds the string in quotes to the location specified by the
point (x,y).

text(x,y,z,'string') adds the string in 3-D coordinates.

text(x,y,z,'string','PropertyName',PropertyValue....) adds the string
in quotes to location defined by the coordinates and uses the values for the
specified text properties. See the text property list section at the end of this
page for a list of text properties.

text('PropertyName',PropertyValue....) omits the coordinates entirely
and specifies all properties using property name/property value pairs.

h = text(..) returns a column vector of handles to text objects, one handle
per object. All forms of the text function optionally return this output
argument.

See the String property for a list of symbols, including Greek letters.

Remarks Specify the text location coordinates (the x, y, and z arguments) in the data
units of the current axes (see “Examples”). The Extent, VerticalAlignment,
and HorizontalAlignment properties control the positioning of the character
string with regard to the text location point.

If the coordinates are vectors, text writes the string at all locations defined by
the list of points. If the character string is an array the same length as x, y, and
z, text writes the corresponding row of the string array at each point specified.

When specifying strings for multiple text objects, the string can be

• a cell array of strings

text

2-511

• a padded string matrix

• a string vector using vertical slash characters (‘|’) as separators.

Each element of the specified string array creates a different text object.

When specifying the string for a single text object, cell arrays of strings and
padded string matrices result in a text object with a multiline string, while
vertical slash characters are not interpreted as separators and result in a
single line string containing vertical slashes.

text is a low-level function that accepts property name/property value pairs as
input arguments, however; the convenience form,

text(x,y,z,'string')

is equivalent to:

text('XData',x,'YData',y,'ZData',z,'String','string')

You can specify other properties only as property name/property value pairs.
See the text property list at the end of this page for a description of each
property. You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see the set and get reference pages for
examples of how to specify these data types).

text does not respect the setting of the figure or axes NextPlot property. This
allows you to add text objects to an existing axes without setting hold to on.

Examples The statements,

plot(0:pi/20:2*pi,sin(0:pi/20:2*pi))
text(pi,0,' \leftarrow sin(\pi)','FontSize',18)

text

2-512

annotate the point at (pi,0) with the string sin(π).

The statement,

text(x,y,'\ite^{i\omega\tau} = cos(\omega\tau) + i sin(\omega\tau)')

uses embedded TeX sequences to produce:

See Also gtext, int2str, num2str, title, xlabel, ylabel, zlabel

The “Labeling Graphs” topic in the online Using MATLAB Graphics manual
discusses positioning text.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 ← sin(π)

eiωτ = cos(ωτ) + i sin(ωτ)

text

2-513

Object
Hierarchy

Setting Default Properties
You can set default text properties on the axes, figure, and root levels.

set(0,'DefaulttextProperty',PropertyValue...)
set(gcf,'DefaulttextProperty',PropertyValue...)
set(gca,'DefaulttextProperty',PropertyValue...)

Where Property is the name of the text property and PropertyValue is the
value you are specifying. Use set and get to access text properties.

Property List The following table lists all text properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Defining the character string

Editing Enable or disable editing mode. Values: on, off
Default: off

Interpreter Enable or disable TeX interpretation Values: tex, none
Default: tex

String The character string (including list of
TeX character sequences)

Value: character string

text

2-514

Positioning the character string

Extent Position and size of text object Values: [left, bottom, width,
height]

HorizontalAlignment Horizontal alignment of text string Values: left, center, right
Default: left

Position Position of text Extent rectangle Values: [x, y, z] coordinates
Default: [] empty matrix

Rotation Orientation of text object Values: scalar (degrees)
Default: 0

Units Units for Extent and Position
properties

Values: pixels, normalized,
inches, centimeters,
points, data
Default: data

VerticalAlignment Vertical alignment of text string Values: top, cap, middle,
baseline, bottom
Default: middle

Specifying the Font

FontAngle Select italic-style font Values: normal, italic,
oblique
Default: normal

FontName Select font family Values: a font supported by
your system or the string
FixedWidth
Default: Helvetica

FontSize Size of font Values: size in FontUnits
Default: 10 points

FontUnits Units for FontSize property Values: points, normalized,
inches, centimeters, pixels
Default: points

Property Name Property Description Property Value

text

2-515

FontWeight Weight of text characters Values: light, normal, demi,
bold
Default: normal

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
text (useful for animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Highlight text when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the text visible or invisible Values: on, off
Default: on

Color Color of the text ColorSpec

Controlling Access to Text Objects

HandleVisibility Determines if and when the the
text’s handle is visible to other
functions

Values: on, callback, off
Default: on

HitTest Determines if the text can become
the current object (see the figure
CurrentObject property)

Values: on, off
Default: on

General Information About Text Objects

Children Text objects have no children Values: [] (empty matrix)

Parent The parent of a text object is always
an axes object

Value: axes handle

Selected Indicate whether the text is in a
“selected” state.

Values: on, off
Default: off

Property Name Property Description Property Value

text

2-516

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'text'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Controlling Callback Routine Execution

BusyAction Specifies how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Defines a callback routine that
executes when a mouse button is
pressed on over the text

Values: string
Default: '' (empty string)

CreateFcn Defines a callback routine that
executes when an text is created

Values: string
Default: '' (empty string)

DeleteFcn Defines a callback routine that
executes when the text is deleted (via
close or delete)

Values: string
Default: '' (empty string)

Interruptible Determines if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu Associates a context menu with the
text

Values: handle of a
uicontextmenu

Property Name Property Description Property Value

Text Properties

2-517

2Text PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Settingcreating_plots Default
Property Values.

Text Property
Descriptions

This section lists property names along with the types of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routines always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the text object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

Children matrix (read only)

The empty matrix; text objects have no children.

Text Properties

2-518

Clipping on | {off}

Clipping mode. When Clipping is on, MATLAB does not display any portion
of the text that is outside the axes.

Color ColorSpec

Text color. A three-element RGB vector or one of MATLAB ’s predefined names,
specifying the text color. The default value for Color is white. See ColorSpec
for more information on specifying color.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a text object. You must
define this property as a default value for text. For example, the statement,

set(0,'DefaultTextCreateFcn',...
'set(gcf,''Pointer'',’'crosshair'')')

defines a default value on the root level that sets the figure Pointer property
to a crosshair whenever you create a text object. MATLAB executes this
routine after setting all text properties. Setting this property on an existing
text object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

DeleteFcn string

Delete text callback routine. A callback routine that executes when you delete
the text object (e.g., when you issue a delete command or clear the axes or
figure). MATLAB executes the routine before destroying the object’s properties
so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

Editing on | {off}

Enable or disable editing mode. When this property is set to the default off,
you cannot edit the text string interactively (i.e., you must change the String
property to change the text). When this property is set to on, MATLAB places
an insert cursor at the beginning of the text string and enables editing. To
apply the new text string:

Text Properties

2-519

• Press the ESC key

• Clicking in any figure window (including the current figure)

• Reset the Editing property to off

MATLAB then updates the String property to contain the new text and resets
the Editing property to off. You must reset the Editing property to on to
again resume editing.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase text objects. Alternative erase modes are useful for creating animated
sequences, where controlling the way individual object redraw is necessary to
improve performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none — Do not erase the text when it is moved or destroyed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

• xor — Draw and erase the text by performing an exclusive OR (XOR) with
each pixel index of the screen beneath it. When the text is erased, it does not
damage the objects beneath it. However, when text is drawn in xor mode, its
color depends on the color of the screen beneath it and is correctly colored
only when over axes background Color, or the figure background Color if the
axes Color is set to none.

• background — Erase the text by drawing it in the background Color, or the
figure background Color if the axes Color is set to none. This damages
objects that are behind the erased text, but text is always properly colored.

Printing with Non-normal Erase Modes. MATLAB always prints figures as if the
EraseMode of all objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers of colors (e.g.,
XORing a pixel color with that of the pixel behind it) and ignore

Text Properties

2-520

three-dimensional sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing non-normal mode objects.

Extent position rectangle (read only)

Position and size of text. A four-element read-only vector that defines the size
and position of the text string.

[left,bottom,width,height]

If the Units property is set to data (the default), left and bottom are the x and
y coordinates of the lower-left corner of the text Extent rectangle.

For all other values of Units, left and bottom are the distance from the
lower-left corner of the axes position rectangle to the lower-left corner of the
text Extent rectangle. width and height are the dimensions of the Extent
rectangle. All measurements are in units specified by the Units property.

FontAngle {normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from those
available on your particular system. Generally, setting this property to italic
or oblique selects a slanted font.

FontName A name such as Courier or the string FixedWidth

Font family. A string specifying the name of the font to use for the text object.
To display and print properly, this must be a font that your system supports.
The default font is Helvetica.

Specifying a Fixed-Width Font
If you want text to use a fixed-width font that looks good in any locale, you
should set FontName to the string FixedWidth:

set(text_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width font, which may
not display text properly on systems that do not use ASCII character encoding
(such as in Japan where multibyte character sets are used). A properly written
MATLAB application that needs to use a fixed-width font should set FontName

Text Properties

2-521

to FixedWidth (note that this string is case sensitive) and rely on
FixedWidthFontName to be set correctly in the end-user’s environment.

End users can adapt a MATLAB application to different locales or personal
environments by setting the root FixedWidthFontName property to the
appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes an immediate
update of the display to use the new font.

FontSize size in FontUnits

Font size. An integer specifying the font size to use for text, in units determined
by the FontUnits property. The default point size is 10 (1 point = 1/72 inch).

FontWeight light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this property to
bold or demi causes MATLAB to use a bold font.

FontUnits {points} | normalized | inches |
centimeters | pixels

Font size units. MATLAB uses this property to determine the units used by the
FontSize property. Normalized units interpret FontSize as a fraction of the
height of the parent axes. When you resize the axes, MATLAB modifies the
screen FontSize accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Text Properties

2-522

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the text can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the text. If HitTest is off, clicking on
the text selects the object below it (which is usually the axes containing it).

For example, suppose you define the button down function of an image (see the
ButtonDownFcn property) to display text at the location you click on with the
mouse.

First define the callback routine.

function bd_function
pt = get(gca,'CurrentPoint');
text(pt(1,1),pt(1,2),pt(1,3),...

'{\fontsize{20}\oplus} The spot to label',...
'HitTest','off')

Text Properties

2-523

Now display an image, setting its ButtonDownFcn property to the callback
routine.

load earth
image(X,'ButtonDownFcn','bd_function'); colormap(map)

When you click on the image, MATLAB displays the text string at that location.
With HitTest set to off, existing text cannot intercept any subsequent button
down events that occur over the text. This enables the image’s button down
function to execute.

HorizontalAlignment{left} | center | right

Horizontal alignment of text. This property specifies the horizontal justification
of the text string. It determines where MATLAB places the string with regard
to the point specified by the Position property. The following picture
illustrates the alignment options.

See the Extent property for related information.

Interpreter {tex} | none

Interpret Tex instructions. This property controls whether MATLAB interprets
certain characters in the String property as Tex instructions (default) or
displays all characters literally. See the String property for a list of support
Tex instructions.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a text callback routine can be interrupted by subsequently invoked
callback routines. text objects have four properties that define callback
routines: ButtonDownFcn, CreateFcn, and DeleteFcn. See the BusyAction
property for information on how MATLAB executes callback routines.

Left Center Right

Text HorizontalAlignment property viewed with the VerticalAlignment
property set to middle (the default).

Text Properties

2-524

Parent handle

Text object’s parent. The handle of the text object’s parent object. The parent of
a text object is the axes in which it is displayed. You can move a text object to
another axes by setting this property to the handle of the new parent.

Position [x,y,[z]]

Location of text. A two- or three-element vector, [x y [z]], that specifies the
location of the text in three dimensions. If you omit the z value, it defaults to
0. All measurements are in units specified by the Units property. Initial value
is [0 0 0].

Rotation scalar (default = 0)

Text orientation. This property determines the orientation of the text string.
Specify values of rotation in degrees (positive angles cause counterclockwise
rotation).

Selected on | {off}

Is object selected? When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

String string

The text string. Specify this property as a quoted string for single-line strings,
or as a cell array of strings or a padded string matrix for multiline strings.
MATLAB displays this string at the specified location. Vertical slash
characters are not interpreted as linebreaks in text strings, and are drawn as
part of the text string. See the “Remarks” section for more information.

When the text Interpreter property is Tex (the default), you can use a subset
of TeX commands embedded in the string to produce special characters such as

Text Properties

2-525

Greek letters and mathematical symbols. The following table lists these
characters and the character sequence used to define them.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ∼

\beta β \phi φ \leq ≤

\gamma γ \chi χ \infty ∞

\delta δ \psi ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma Γ \heartsuit ♥

\eta η \Delta ∆ \spadesuit ♠

\theta θ \Theta Θ \leftrightarrow ↔

\vartheta ϑ \Lambda Λ \leftarrow ←

\iota ι \Xi Ξ \uparrow ↑

\kappa κ \Pi Π \rightarrow →

\lambda λ \Sigma Σ \downarrow ↓

\mu µ \Upsilon Υ \circ °

\nu ν \Phi Φ \pm ±

\xi ξ \Psi Ψ \geq ≥

\pi π \Omega Ω \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •

\varsigma ς \ni ∋ \div ÷

\tau τ \cong ≅ \neq ≠

Text Properties

2-526

You can also specify stream modifiers that control the font used. The first four
modifiers are mutually exclusive. However, you can use \fontname in
combination with one of the other modifiers:

• \bf – bold font

• \it – italics font

• \sl – oblique font (rarely available)

• \rm – normal font

• \fontname{fontname} – specify the name of the font family to use.

• \fontsize{fontsize} – specify the font size in FontUnits.

Stream modifiers remain in effect until the end of the string or only within the
context defined by braces { }.

\equiv ≡ \approx ≈ \aleph ℵ

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int ∫ \in ∈ \o ο

\rfloor  \lceil  \nabla ∇

\lfloor  \cdot ⋅ \ldots …

\perp ⊥ \neg ¬ \prime ′

\wedge ∧ \times × \0 ∅

\rceil  \surd √ \mid |

\vee ∨ \varpi ϖ \copyright 

\langle 〈 \rangle 〉

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

Text Properties

2-527

Specifying Subscript and Superscript Characters
The subscript character “_” and the superscript character “^” modify the
character or substring defined in braces immediately following.

To print the special characters used to define the Tex strings when
Interpreter is Tex, prefix them with the backslash “\” character: \\, \{, \} _,
\^.

See the example for more information.

When Interpreter is none, no characters in the String are interpreted, and
all are displayed when the text is drawn.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For text objects, Type is always the string 'text'.

Units pixels | normalized | inches |
centimeters | points | {data}

Units of measurement. This property specifies the units MATLAB uses to
interpret the Extent and Position properties. All units are measured from the
lower-left corner of the axes plotbox. Normalized units map the lower-left
corner of the rectangle defined by the axes to (0,0) and the upper-right corner
to (1.0,1.0). pixels, inches, centimeters, and points are absolute units (1
point = 1/72 inch). data refers to the data units of the parent axes.

If you change the value of Units, it is good practice to return it to its default
value after completing your computation so as not to affect other functions that
assume Units is set to the default value.

UserData matrix

User-specified data. Any data you want to associate with the text object.
MATLAB does not use this data, but you can access it using set and get.

Text Properties

2-528

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the text. Assign this property the handle of a
uicontextmenu object created in the same figure as the text. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the text.

VerticalAlignment top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical justification of
the text string. It determines where MATLAB places the string with regard to
the value of the Position property. The possible values mean:

• top – Place the top of the string’s Extent rectangle at the specified y-position.

• cap – Place the string so that the top of a capital letter is at the specified
y-position.

• middle – Place the middle of the string at specified y-position.

• baseline – Place font baseline at the specified y-position.

• bottom – Place the bottom of the string’s Extent rectangle at the specified
y-position.

The following picture illustrates the alignment options.

Visible {on} | off

Text visibility. By default, all text is visible. When set to off, the text is not
visible, but still exists and you can query and set its properties.

Middle Top Cap

Baseline Bottom

Text VerticalAlignment property viewed with the HorizontalAlignment
property set to left (the default).

textread

2-529

2textreadPurpose Read formatted data from text file

Graphical
Interface

As an alternative to textread, use the Import Wizard. To activate the Import
Wizard, select Import Data from the File menu.

Syntax [A,B,C,...] = textread('filename','format')
[A,B,C,...] = textread('filename','format',N)
[...] = textread(...,'param','value',...)

Description [A,B,C,...] = textread('filename','format') reads data from the file
'filename' into the variables A,B,C, and so on, using the specified format,
until the entire file is read. textread is useful for reading text files with a
known format. Both fixed and free format files can be handled.

textread matches and converts groups of characters from the input. Each
input field is defined as a string of non-whitespace characters that extends to
the next whitespace or delimiter character, or to the maximum field width.
Repeated delimiter characters are significant, while repeated whitespace
characters are treated as one.

The format string determines the number and types of return arguments. The
number of return arguments is the number of items in the format string. The
format string supports a subset of the conversion specifiers and conventions of
the C language fscanf routine. Values for the format string are listed in the
table below. Whitespace characters in the format string are ignored.

format Action Output

Literals
(ordinary
characters)

Ignore the matching characters.
For example, in a file that has
Dept followed by a number (for
department number), to skip the
Dept and read only the number,
use 'Dept' in the format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating point value. Double array

textread

2-530

[A,B,C,...] = textread('filename','format',N) reads the data, reusing
the format string N times, where N is an integer greater than zero. If N is
smaller than zero, textread reads the entire file.

%s Read a whitespace or delimiter-
separated string.

Cell array of strings

%q Read a string, which could be in
double quotes.

Cell array of
strings. Does not
include the double
quotes.

%c Read characters, including white
space.

Character array

%[...] Read the longest string containing
characters specified in the
brackets.

Cell array of strings

%[^...] Read the longest non-empty string
containing characters that are not
specified in the brackets.

Cell array of strings

%*...
instead of %

Ignore the matching characters
specified by *.

No output

%w...
instead of %

Read field width specified by w.
The %f format supports %w.pf,
where w is the field width and p is
the precision.

format Action Output

textread

2-531

[...] = textread(...,'param','value',...) customizes textread using
param/value pairs, as listed in the table below.

Note When textread reads a consecutive series of whitespace values, it
treats them as one whitespace. When it reads a consecutive series of
delimiter values, it treats each as a separate delimiter.

param value Action

whitespace Any from
the list
below:

Treats vector of characters as
whitespace. Default is ' \b\t'.

' '
\b
\n
\r
\t

Space
Backspace
New line
Carriage return
Horizontal tab

delimiter Delimiter
character

Specifies delimiter character. Default is
none.

expchars Exponent
characters

Default is eEdD.

bufsize positive
integer

Specifies the maximum string length, in
bytes. Default is 4095.

headerlines positive
integer

Ignores the specified number of lines at
the beginning of the file.

commentstyle matlab Ignores characters after %

commentstyle shell Ignores characters after #.

commentstyle c Ignores characters between /* and */.

commentstyle c++ Ignores characters after //.

textread

2-532

Examples Example 1 – Read All Fields in Free Format File Using %
The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file as a free format file using the % format.

[names,types,x,y,answer] = textread('mydata.dat','%s %s %f ...
%d %s',1)

returns

names =
 'Sally'
types =
 'Type1'
x =
 12.34000000000000
y =
 45
answer =
 'Yes'

Example 2 – Read as Fixed Format File, Ignoring the Floating Point Value
The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file as a fixed format file, ignoring the floating point
value.

[names,types,y,answer] = textread('mydata.dat','%9c %5s %*f ...
%2d %3s',1)

returns

names =
Sally
types =
 'Type1'
y =
 45
answer =

textread

2-533

 'Yes'

%*f in the format string causes textread to ignore the floating point value, in
this case, 12.34.

Example 3 – Read Using Literal to Ignore Matching Characters
The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file, ignoring the characters Type in the second field.

[names,typenum,x,y,answer] = textread('mydata.dat','%s Type%d %f
%d %s',1)

returns

names =
 'Sally'
typenum =
 1
x =
 12.34000000000000
y =
 45
answer =
 'Yes'

Type%d in the format string causes the characters Type in the second field to be
ignored, while the rest of the second field is read as a signed integer, in this
case, 1.

Example 4 – Read M-file into a Cell Array of Strings
Read the file fft.m into cell array of strings.

file = textread('fft.m','%s','delimiter','\n','whitespace','');

See Also dlmread, csvread, fscanf

textwrap

2-534

2textwrapPurpose Return wrapped string matrix for given uicontrol

Syntax outstring = textwrap(h,instring)
[outstring,position] = textwrap(h,instring)

Description outstring = textwrap(h,instring) returns a wrapped string cell array,
outstring, that fits inside the uicontrol with handle h. instring is a cell array,
with each cell containing a single line of text. outstring is the wrapped string
matrix in cell array format. Each cell of the input string is considered a
paragraph.

[outstring,position]=textwrap(h,instring) returns the recommended
position of the uicontrol in the units of the uicontrol. position considers the
extent of the multiline text in the x and y directions.

Example Place a textwrapped string in a uicontrol:

pos = [10 10 100 10];
h = uicontrol('Style','Text','Position',pos);
string = {'This is a string for the uicontrol.',

'It should be correctly wrapped inside.'};
[outstring,newpos] = textwrap(h,string);
pos(4) = newpos(4);
set(h,'String',outstring,'Position',[pos(1),pos(2),pos(3)+10,pos(4)])

See Also uicontrol

tic, toc

2-535

2tic, tocPurpose Stopwatch timer

Syntax tic
any statements

toc
t = toc

Description tic starts a stopwatch timer.

toc prints the elapsed time since tic was used.

t = toc returns the elapsed time in t.

Examples This example measures how the time required to solve a linear system varies
with the order of a matrix.

for n = 1:100
A = rand(n,n);
b = rand(n,1);
tic
x = A\b;
t(n) = toc;

end
plot(t)

See Also clock, cputime, etime

title

2-536

2titlePurpose Add title to current axes

Syntax title('string')
title(fname)
title(...,'PropertyName',PropertyValue,...)
h = title(...)

Description Each axes graphics object can have one title. The title is located at the top and
in the center of the axes.

title('string') outputs the string at the top and in the center of the current
axes.

title(fname) evaluates the function that returns a string and displays the
string at the top and in the center of the current axes.

title(...,'PropertyName',PropertyValue,...) specifies property name
and property value pairs for the text graphics object that title creates.

h = title(...) returns the handle to the text object used as the title.

Examples Display today’s date in the current axes:

title(date)

Include a variable’s value in a title:

f = 70;
c = (f—32)/1.8;
title(['Temperature is ',num2str(c),'C'])

Include a variable’s value in a title and set the color of the title to yellow:

n = 3;
title(['Case number #',int2str(n)],'Color','y')

Include Greek symbols in a title:

title('\ite^{\omega\tau} = cos(\omega\tau) + isin(\omega\tau)’)

Include a superscript character in a title:

title('\alpha^2’)

title

2-537

Include a subscript character in a title:

title('X_1')

The text object String property lists the available symbols.

Remarks title sets the Title property of the current axes graphics object to a new text
graphics object. See the text String property for more information.

See Also gtext, int2str, num2str, plot, text, xlabel, ylabel, zlabel

toeplitz

2-538

2toeplitzPurpose Toeplitz matrix

Syntax T = toeplitz(c,r)
T = toeplitz(r)

Description A Toeplitz matrix is defined by one row and one column. A symmetric Toeplitz
matrix is defined by just one row. toeplitz generates Toeplitz matrices given
just the row or row and column description.

T = toeplitz(c,r) returns a nonsymmetric Toeplitz matrix T having c as its
first column and r as its first row. If the first elements of c and r are different,
a message is printed and the column element is used.

T = toeplitz(r) returns the symmetric or Hermitian Toeplitz matrix formed
from vector r, where r defines the first row of the matrix.

Examples A Toeplitz matrix with diagonal disagreement is

c = [1 2 3 4 5];
r = [1.5 2.5 3.5 4.5 5.5];
toeplitz(c,r)
Column wins diagonal conflict:
ans =

1.000 2.500 3.500 4.500 5.500
2.000 1.000 2.500 3.500 4.500
3.000 2.000 1.000 2.500 3.500
4.000 3.000 2.000 1.000 2.500
5.000 4.000 3.000 2.000 1.000

See Also hankel

trace

2-539

2tracePurpose Sum of diagonal elements

Syntax b = trace(A)

Description b = trace(A) is the sum of the diagonal elements of the matrix A.

Algorithm trace is a single-statement M-file.

t = sum(diag(A));

See Also det, eig

trapz

2-540

2trapzPurpose Trapezoidal numerical integration

Syntax Z = trapz(Y)
Z = trapz(X,Y)
Z = trapz(...,dim)

Description Z = trapz(Y) computes an approximation of the integral of Y via the
trapezoidal method (with unit spacing). To compute the integral for spacing
other than one, multiply Z by the spacing increment.

If Y is a vector, trapz(Y) is the integral of Y.

If Y is a matrix,trapz(Y) is a row vector with the integral over each column.

If Y is a multidimensional array, trapz(Y) works across the first nonsingleton
dimension.

Z = trapz(X,Y) computes the integral of Y with respect to X using trapezoidal
integration.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), trapz(X,Y) operates across this dimension.

Z = trapz(...,dim) integrates across the dimension of Y specified by scalar
dim. The length of X, if given, must be the same as size(Y,dim).

Examples The exact value of is 2.

To approximate this numerically on a uniformly spaced grid, use

X = 0:pi/100:pi;
Y = sin(x);

Then both

Z = trapz(X,Y)

and

Z = pi/100*trapz(Y)

produce

x()sin xd
0

π
∫

trapz

2-541

Z =
1.9998

A nonuniformly spaced example is generated by

X = sort(rand(1,101)*pi);
Y = sin(X);
Z = trapz(X,Y);

The result is not as accurate as the uniformly spaced grid. One random sample
produced

Z =
1.9984

See Also cumsum, cumtrapz

treelayout

2-542

2treelayoutPurpose Lay out tree or forest

Syntax [x,y] = treelayout(parent,post)
[x,y,h,s] = treelayout(parent,post)

Description [x,y] = treelayout(parent,post) lays out a tree or a forest. parent is the
vector of parent pointers, with 0 for a root. post is an optional postorder
permutation on the tree nodes. If you omit post, treelayout computes it. x and
y are vectors of coordinates in the unit square at which to lay out the nodes of
the tree to make a nice picture.

[x,y,h,s] = treelayout(parent,post) also returns the height of the tree h
and the number of vertices s in the top-level separator.

See Also etree, treeplot, etreeplot, symbfact

treeplot

2-543

2treeplotPurpose Plot picture of tree

Syntax treeplot(p)
treeplot(p,nodeSpec,edgeSpec)

Description treeplot(p) plots a picture of a tree given a vector of parent pointers, with
p(i) = 0 for a root.

treeplot(p,nodeSpec,edgeSpec) allows optional parameters nodeSpec and
edgeSpec to set the node or edge color, marker, and linestyle. Use '' to omit
one or both.

See Also etree, etreeplot, treelayout

tril

2-544

2trilPurpose Lower triangular part of a matrix

Syntax L = tril(X)
L = tril(X,k)

Description L = tril(X) returns the lower triangular part of X.

L = tril(X,k) returns the elements on and below the kth diagonal of X. k = 0
is the main diagonal, k > 0 is above the main diagonal, and k < 0 is below the
main diagonal.

Examples tril(ones(4,4),-1)

ans =

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

See Also diag, triu

k > 0

k < 0

k = 0

trimesh

2-545

2trimeshPurpose Triangular mesh plot

Syntax trimesh(Tri,X,Y,Z)
trimesh(Tri,X,Y,Z,C)
trimesh(...'PropertyName',PropertyValue...)
h = trimesh(...)

Description trimesh(Tri,X,Y,Z) displays triangles defined in the m-by-3 face matrix Tri
as a mesh. Each row of Tri defines a single triangular face by indexing into the
vectors or matrices that contain the X, Y, and Z vertices.

trimesh(Tri,X,Y,Z,C) specifies color defined by C in the same manner as the
surf function. MATLAB performs a linear transformation on this data to
obtain colors from the current colormap.

trimesh(...'PropertyName',PropertyValue...) specifies additional patch
property names and values for the patch graphics object created by the
function.

h = trimesh(...) returns a handle to a patch graphics object.

Example Create vertex vectors and a face matrix, then create a triangular mesh plot.

x = rand(1,50);
y = rand(1,50);
z = peaks(6*x–3,6*x–3);
tri = delaunay(x,y);
trimesh(tri,x,y,z)

See Also patch, tetramesh, triplot, trisurf, delaunay

triplot

2-546

2triplotPurpose 2-D triangular plot

Syntax triplot(TRI,x,y)
triplot(TRI,x,y,color)
h = triplot(...)
triplot(...,'param','value','param','value'...)

Description triplot(TRI,x,y) displays the triangles defined in the m-by-3 matrix TRI. A
row of TRI contains indices into the vectors x and y that define a single triangle.
The default line color is blue.

triplot(TRI,x,y,color) uses the string color as the line color. color can
also be a line specification. See ColorSpec for a list of valid color strings. See
LineSpec for information about line specifications.

h = triplot(...) returns a vector of handles to the displayed triangles.

triplot(...,'param','value','param','value'...) allows additional line
property name/property value pairs to be used when creating the plot. See Line
Properties for information about the available properties.

Examples This code plots the Delaunay triangulation for 10 randomly generated points.

rand('state',7);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
triplot(TRI,x,y,'red')

triplot

2-547

See Also ColorSpec, delaunay, line, Line Properties, LineSpec, plot, trimesh,
trisurf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trisurf

2-548

2trisurfPurpose Triangular surface plot

Syntax trisurf(Tri,X,Y,Z)
trisurf(Tri,X,Y,Z,C)
trisurf(...'PropertyName',PropertyValue...)
h = trisurf(...)

Description trisurf(Tri,X,Y,Z) displays triangles defined in the m-by-3 face matrix Tri
as a surface. Each row of Tri defines a single triangular face by indexing into
the vectors or matrices that contain the X, Y, and Z vertices.

trisurf(Tri,X,Y,Z,C) specifies color defined by C in the same manner as the
surf function. MATLAB performs a linear transformation on this data to
obtain colors from the current colormap.

trisurf(...'PropertyName',PropertyValue...) specifies additional patch
property names and values for the patch graphics object created by the
function.

h = trisurf(...) returns a patch handle.

Example Create vertex vectors and a face matrix, then create a triangular surface plot.

x = rand(1,50);
y = rand(1,50);
z = peaks(6*x–3,6*x–3);
tri = delaunay(x,y);
trisurf(tri,x,y,z)

See Also patch, surf, tetramesh, trimesh, triplot, delaunay

triu

2-549

2triuPurpose Upper triangular part of a matrix

Syntax U = triu(X)
U = triu(X,k)

Description U = triu(X) returns the upper triangular part of X.

U = triu(X,k) returns the element on and above the kth diagonal of X. k = 0
is the main diagonal, k > 0 is above the main diagonal, and k < 0 is below the
main diagonal.

Examples triu(ones(4,4),-1)

ans =

1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 1

See Also diag, tril

k > 0

k < 0

k = 0

try

2-550

2tryPurpose Begin try block

Description The general form of a try statement is:

try,
statement,
...,
statement,

catch,
statement,
...,
statement,

end

Normally, only the statements between the try and catch are executed.
However, if an error occurs while executing any of the statements, the error is
captured into lasterr, and the statements between the catch and end are
executed. If an error occurs within the catch statements, execution stops
unless caught by another try...catch block. The error string produced by a
failed try block can be obtained with lasterr.

See Also catch, end, eval, evalin

tsearch

2-551

2tsearchPurpose Search for enclosing Delaunay triangle

Syntax T = tsearch(x,y,TRI,xi,yi)

Description T = tsearch(x,y,TRI,xi,yi) returns an index into the rows of TRI for each
point in xi, yi. The tsearch command returns NaN for all points outside the
convex hull. Requires a triangulation TRI of the points x,y obtained from
delaunay.

Note tsearch is based on qhull [2]. For information about qhull, see
http://www.geom.umn.edu/software/qhull/. For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also delaunay, delaunayn, dsearch, tsearchn

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at http://www.acm.org/
pubs/citations/journals/toms/1996-22-4/p469-barber/ and in PostScript
format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

tsearchn

2-552

2tsearchnPurpose n-D closest simplex search

Syntax t = tsearchn(X,TES,XI)
[t,P] = tsearchn(X,TES,XI)

Description t = tsearchn(X,TES,XI) returns the indices t of the enclosing simplex of the
Delaunay tessellation TES for each point in XI. X is an m-by-n matrix,
representing m points in n-D space. XI is a p-by-n matrix, representing p points
in n-D space. tsearchn returns NaN for all points outside the convex hull of X.
tsearchn requires a tessellation TES of the points X obtained from delaunayn.

[t,P] = tsearchn(X,TES,XI) also returns the Barencentric coordinate P of XI
in the simplex TES. P is a p-by-n+1 matrix. Each row of P is the Barencentric
coordinate of the corresponding point in XI. It is useful for interpolation.

See Also delaunayn, griddatan, tsearch

type

2-553

2typePurpose List file

Syntax type ('filename')
type filename

Description type('filename') displays the contents of the specified file in the MATLAB
Command Window. Use the full path for filename, or use a MATLAB relative
partial pathname.

If you do not specify a filename extension there is no filename file without an
extension, the type function adds the .m extension by default. The type
function checks the directories specified in MATLAB’s search path, which
makes it convenient for listing the contents of M-files on the screen.

type filename is the unquoted form of the syntax.

Examples type('foo.bar') lists the contents of the file foo.bar.

type foo lists the contents of the file foo. If foo does not exist, type foo lists
the contents of the file foo.m.

See Also cd, dbtype, delete, dir, partialpath, path, what, who

uicontextmenu

2-554

2uicontextmenuPurpose Create a context menu

Syntax handle = uicontextmenu('PropertyName',PropertyValue,...);

Description uicontextmenu creates a context menu, which is a menu that appears when the
user right-clicks on a graphics object.

You create context menu items using the uimenu function. Menu items appear
in the order the uimenu statements appear. You associate a context menu with
an object using the UIContextMenu property for the object and specifying the
context menu’s handle as the property value.

Properties This table lists the properties that are useful to uicontextmenu objects,
grouping them by function. Each property name acts as a link to a description
of the property.

Property Name Property Description Property Value

Controlling Style and Appearance

Visible Uicontextmenu visibility Value: on, off
Default: off

Position Location of uicontextmenu when
Visible is set to on

Value: two-element vector
Default: [0 0]

General Information About the Object

Children The uimenus defined for the
uicontextmenu

Value: matrix

Parent Uicontextmenu object’s parent Value: scalar figure handle

Tag User-specified object identifier Value: string

Type Class of graphics object Value: string (read-only)
Default: uicontrol

UserData User-specified data Value: matrix

uicontextmenu

2-555

Example These statements define a context menu associated with a line. When the user
extend-clicks anywhere on the line, the menu appears. Menu items enable the
user to change the line style.

% Define the context menu
cmenu = uicontextmenu;
% Define the line and associate it with the context menu
hline = plot(1:10, 'UIContextMenu', cmenu);
% Define callbacks for context menu items
cb1 = ['set(hline, ''LineStyle'', ''--'')'];
cb2 = ['set(hline, ''LineStyle'', '':'')'];
cb3 = ['set(hline, ''LineStyle'', ''-'')'];
% Define the context menu items
item1 = uimenu(cmenu, 'Label', 'dashed', 'Callback', cb1);
item2 = uimenu(cmenu, 'Label', 'dotted', 'Callback', cb2);
item3 = uimenu(cmenu, 'Label', 'solid', 'Callback', cb3);

Controlling Callback Routine Execution

BusyAction Callback routine interruption Value: cancel, queue
Default: queue

Callback Control action Value: string

CreateFcn Callback routine executed during
object creation

Value: string

DeleteFcn Callback routine executed during
object deletion

Value: string

Interruptible Callback routine interruption mode Value: on, off
Default: on

Controlling Access to Objects

HandleVisibility Whether handle is accessible from
command line and GUIs

Value: on, callback, off
Default: on

Property Name Property Description Property Value

uicontextmenu

2-556

When the user extend-clicks on the line, the context menu appears, as shown
in this figure:

Object
Hierarchy

See Also uicontrol, uimenu

Root

UimenuAxes Uicontrol

Figure

Uicontextmenu

Uimenu Uimenu

uicontextmenu Properties

2-557

2uicontextmenu PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Settingcreating_plots Default
Property Values.

Uicontextmenu
Property
Descriptions

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If a callback routine is executing, subsequently invoked callback
routines always attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then interruption
occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property of the object whose
callback is executing determines how MATLAB handles the event. The choices
are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

This property has no effect on uicontextmenu objects.

Callback string

Control action. A routine that executes whenever you right-click on an object
for which a context menu is defined. The routine executes immediately before
the context menu is posted. Define this routine as a string that is a valid
MATLAB expression or the name of an M-file. The expression executes in the
MATLAB workspace.

Children matrix

The uimenus defined for the uicontextmenu.

uicontextmenu Properties

2-558

Clipping {on} | off

This property has no effect on uicontextmenu objects.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a uicontextmenu object.
You must define this property as a default value for uicontextmenus. For
example, this statement:

set(0,'DefaultUicontextmenuCreateFcn',...
'set(gcf,''IntegerHandle'',''off'')')

defines a default value on the root level that sets the figure IntegerHandle
property to off whenever you create a uicontextmenu object. MATLAB
executes this routine after setting all property values for the uicontextmenu.
Setting this property on an existing uicontextmenu object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete uicontextmenu callback routine. A callback routine that executes when
you delete the uicontextmenu object (e.g., when you issue a delete command
or clear the figure containing the uicontextmenu). MATLAB executes the
routine before destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from

uicontextmenu Properties

2-559

within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

This property has no effect on uicontextmenu objects.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a uicontextmenu callback routine can be interrupted by subsequently
invoked callback routines. By default (on), execution of a callback routine can
be interrupted.

Only callback routines defined for the ButtonDownFcn and Callback properties
are affected by the Interruptible property. MATLAB checks for events that
can interrupt a callback routine only when it encounters a drawnow, figure,
getframe, pause, or waitfor command in the routine.

uicontextmenu Properties

2-560

Parent handle

Uicontextmenu’s parent. The handle of the uicontextmenu’s parent object. The
parent of a uicontextmenu object is the figure in which it appears. You can
move a uicontextmenu object to another figure by setting this property to the
handle of the new parent.

Position vector

Uicontextmenu’s position. A two-element vector that defines the location of a
context menu posted by setting the Visible property value to on. Specify
Position as

[left bottom]

where vector elements represent the distance in pixels from the bottom left
corner of the figure window to the top left corner of the context menu.

Selected on | {off}

This property has no effect on uicontextmenu objects.

SelectionHighlight {on} | off

This property has no effect on uicontextmenu objects.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string

Class of graphics object. For uicontextmenu objects, Type is always the string
'uicontextmenu'.

UIContextMenu handle

This property has no effect on uicontextmenus.

UserData matrix

User-specified data. Any data you want to associate with the uicontextmenu
object. MATLAB does not use this data, but you can access it using set and get.

uicontextmenu Properties

2-561

Visible on | {off}

Uicontextmenu visibility. The Visible property can be used in two ways:

• Its value indicates whether the context menu is currently posted. While the
context menu is posted, the property value is on; when the context menu is
not posted, its value is off.

• Its value can be set to on to force the posting of the context menu. Similarly,
setting the value to off forces the context menu to be removed. When used
in this way, the Position property determines the location of the posted
context menu.

uicontrol

2-562

2uicontrolPurpose Create user interface control object

Syntax handle = uicontrol(parent)
handle = uicontrol(...,'PropertyName',PropertyValue,...)

Description uicontrol creates uicontrol graphics objects (user interface controls). You
implement graphical user interfaces using uicontrols. When selected, most
uicontrol objects perform a predefined action. MATLAB supports numerous
styles of uicontrols, each suited for a different purpose:

• Check boxes

• Editable text

• Frames

• List boxes

• Pop-up menus

• Push buttons

• Radio buttons

• Sliders

• Static text

• Toggle buttons

Check boxes generate an action when clicked on. These devices are useful when
providing the user with a number of independent choices. To activate a check
box, click the mouse button on the object. The state of the device is indicated on
the display.

Editable text boxes are fields that enable users to enter or modify text values.
Use editable text when you want text as input.

On Microsoft Windows systems, if an editable text box has focus, clicking on
the menu bar does not cause the editable text callback routine to execute.
However, it does cause execution on UNIX systems. Therefore, after clicking on
the menu bar, the statement

get(edit_handle,'String')

does not return the current contents of the edit box on Microsoft Windows
systems because MATLAB must execute the callback routine to update the

uicontrol

2-563

String property (even though the text string has changed on the screen). This
behavior is consistent with the respective platform conventions.

Frames are boxes that visually enclose regions of a figure window. Frames can
make a user interface easier to understand by visually grouping related
controls. Frames have no callback routines associated with them. Only
uicontrols can appear within frames.

Frames are opaque, not transparent, so the order you define uicontrols is
important in determining whether uicontrols within a frame are covered by the
frame or are visible. Stacking order determines the order objects are drawn:
objects defined first are drawn first; objects defined later are drawn over
existing objects. If you use a frame to enclose objects, you must define the frame
before you define the objects.

List boxes display a list of items (defined using the String property) and enable
users to select one or more items. The Min and Max properties control the
selection mode. The Value property indicates selected entries and contains the
indices into the list of strings; a vector value indicates multiple selections.
MATLAB evaluates the list box’s callback routine after any mouse button up
event that changes the Value property. Therefore, you may need to add a
“Done” button to delay action caused by multiple clicks on list items. List boxes
differentiate between single and double clicks and set the figure
SelectionType property to normal or open accordingly before evaluating the
list box’s Callback property.

Pop-up menus open to display a list of choices (defined using the String
property) when pressed. When not open, a pop-up menu indicates the current
choice. Pop-up menus are useful when you want to provide users with a
number of mutually exclusive choices, but do not want to take up the amount
of space that a series of radio buttons requires. You must specify a value for the
String property.

Push buttons generate an action when pressed. To activate a push button, click
the mouse button on the push button.

Radio buttons are similar to check boxes, but are intended to be mutually
exclusive within a group of related radio buttons (i.e., only one is in a pressed
state at any given time). To activate a radio button, click the mouse button on
the object. The state of the device is indicated on the display. Note that your
code can implement the mutually exclusive behavior of radio buttons.

uicontrol

2-564

Sliders accept numeric input within a specific range by enabling the user to
move a sliding bar. Users move the bar by pressing the mouse button and
dragging the pointer over the bar, or by clicking in the trough or on an arrow.
The location of the bar indicates a numeric value, which is selected by releasing
the mouse button. You can set the minimum, maximum, and current values of
the slider.

Static text boxes display lines of text. Static text is typically used to label other
controls, provide directions to the user, or indicate values associated with a
slider. Users cannot change static text interactively and there is no way to
invoke the callback routine associated with it.

Toggle buttons are controls that execute callbacks when clicked on and indicate
their state, either on or off. Toggle buttons are useful for building toolbars.

Remarks The uicontrol function accepts property name/property value pairs,
structures, and cell arrays as input arguments and optionally returns the
handle of the created object. You can also set and query property values after
creating the object using the set and get functions.

Uicontrol objects are children of figures and therefore do not require an axes to
exist when placed in a figure window.

Properties This table lists all properties useful for uicontrol objects, grouping them by
function. Each property name acts as a link to a description of the property.

Property Name Property Description Property Value

Controlling Style and Appearance

BackgroundColor Object background color Value: ColorSpec
Default: system dependent

CData Truecolor image displayed on the
control

Value: matrix

ForegroundColor Color of text Value: ColorSpec
Default: [0 0 0]

SelectionHighlight Object highlighted when selected Value: on, off
Default: on

uicontrol

2-565

String Uicontrol label, also list box and
pop-up menu items

Value: string

Visible Uicontrol visibility Value: on, off
Default: on

General Information About the Object

Children Uicontrol objects have no children

Enable Enable or disable the uicontrol Value: on, inactive, off
Default: on

Parent Uicontrol object’s parent Value: scalar figure handle

Selected Whether object is selected Value: on, off
Default: off

SliderStep Slider step size Value: two-element vector
Default: [0.01 0.1]

Style Type of uicontrol object Value: pushbutton,
togglebutton,
radiobutton, checkbox,
edit, text, slider, frame,
listbox, popupmenu
Default: pushbutton

Tag User-specified object identifier Value: string

TooltipString Content of object’s tooltip Value: string

Type Class of graphics object Value: string (read-only)
Default: uicontrol

UserData User-specified data Value: matrix

Controlling the Object Position

Position Size and location of uicontrol object Value: position rectangle
Default: [20 20 60 20]

Property Name Property Description Property Value

uicontrol

2-566

Units Units to interpret position vector Value: pixels, normalized,
inches, centimeters,
points, characters
Default: pixels

Controlling Fonts and Labels

FontAngle Character slant Value: normal, italic,
oblique
Default: normal

FontName Font family Value: string
Default: system dependent

FontSize Font size Value: size in FontUnits
Default: system dependent

FontUnits Font size units Value: points, normalized,
inches, centimeters,
pixels
Default: points

FontWeight Weight of text characters Value: light, normal, demi,
bold
Default: normal

HorizontalAlignment Alignment of label string Value: left, center, right
Default: depends on
uicontrol object

String Uicontrol object label, also list box
and pop-up menu items

Value: string

Controlling Callback Routine Execution

BusyAction Callback routine interruption Value: cancel, queue
Default: queue

ButtonDownFcn Button press callback routine Value: string

Callback Control action Value: string

Property Name Property Description Property Value

uicontrol

2-567

Examples The following statement creates a push button that clears the current axes
when pressed:

h = uicontrol('Style', 'pushbutton', 'String', 'Clear',...
'Position', [20 150 100 70], 'Callback', 'cla');

CreateFcn Callback routine executed during
object creation

Value: string

DeleteFcn Callback routine executed during
object deletion

Value: string

Interruptible Callback routine interruption mode Value: on, off
Default: on

UIContextMenu Uicontextmenu object associated
with the uicontrol

Value: handle

Information About the Current State

ListboxTop Index of top-most string displayed
in list box

Value: scalar
Default: [1]

Max Maximum value (depends on
uicontrol object)

Value: scalar
Default: object dependent

Min Minimum value (depends on
uicontrol object)

Value: scalar
Default: object dependent

Value Current value of uicontrol object Value: scalar or vector
Default: object dependent

Controlling Access to Objects

HandleVisibility Whether handle is accessible from
command line and GUIs

Value: on, callback, off
Default: on

HitTest Whether selectable by mouse click Value: on, off
Default: on

Property Name Property Description Property Value

uicontrol

2-568

You can create a uicontrol object that changes figure colormaps by specifying a
pop-up menu and supplying an M-file name as the object’s Callback:

hpop = uicontrol('Style', 'popup',...
'String', 'hsv|hot|cool|gray',...
'Position', [20 320 100 50],...
'Callback', 'setmap');

The above call to uicontrol defines four individual choices in the menu: hsv,
hot, cool, and gray. You specify these choices with the String property,
separating the choices with the “|” character.

The Callback, in this case setmap, is the name of an M-file that defines a more
complicated set of instructions than a single MATLAB command. setmap
contains these statements:

val = get(hpop,'Value');
if val == 1

colormap(hsv)
elseif val == 2

colormap(hot)
elseif val == 3

colormap(cool)
elseif val == 4

colormap(gray)
end

The Value property contains a number that indicates the selected choice. The
choices are numbered sequentially from one to four. The setmap M-file can get
and then test the contents of the Value property to determine what action to
take.

uicontrol

2-569

Object
Hierarchy

See Also textwrap, uimenu

Root

UimenuAxes Uicontrol

Figure

Uicontextmenu

Uimenu Uimenu

Uicontrol Properties

2-570

2Uicontrol PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Settingcreating_plots Default
Property Values.

Uicontrol
Property
Descriptions

You can set default uicontrol properties on the root and figure levels:

set(0,'DefaultUicontrolProperty',PropertyValue...)
set(gcf,'DefaultUicontrolProperty',PropertyValue...)

where Property is the name of the uicontrol property whose default value you
want to set and PropertyValue is the value you are specifying. Use set and get
to access uicontrol properties.

Curly braces { } enclose the default value.

BackgroundColor ColorSpec

Object background color. The color used to fill the uicontrol rectangle. Specify
a color using a three-element RGB vector or one of MATLAB’s predefined
names. The default color is determined by system settings. See ColorSpec for
more information on specifying color.

BusyAction cancel | {queue}

Callback routine interruption. If a callback is executing and the user triggers
an event (such as a mouse click) on an object for which a callback is defined,
that callback attempts to interrupt the first callback. The first callback can be
interrupted only at a drawnow, figure, getframe, pause, or waitfor command;
if the callback does not contain any of these commands, it cannot be
interrupted.

If the Interruptible property of the object whose callback is executing is off
(the default value is on), the callback cannot be interrupted (except by certain
callbacks; see the note below). The BusyAction property of the object whose
callback is waiting to execute determines what happens to the callback:

Uicontrol Properties

2-571

• If the value is queue, the callback is added to the event queue and executes
after the first callback finishes execution.

• If the value is cancel, the event is discarded and the callback is not executed.

Note If the interrupting callback is a DeleteFcn or CreateFcn callback or a
figure’s CloseRequest or ResizeFcn callback, it interrupts an executing
callback regardless of the value of that object’s Interruptible property. The
interrupting callback starts execution at the next drawnow, figure, getframe,
pause, or waitfor statement.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is in a five-pixel wide border around the
uicontrol. When the uicontrol’s Enable property is set to inactive or off, the
ButtonDownFcn executes when you click the mouse in the five-pixel border or
on the control itself. This is useful for implementing actions to interactively
modify control object properties, such as size and position, when they are
clicked on (using selectmoveresize, for example).

Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

The Callback property defines the callback routine that executes when you
activate the enabled uicontrol (e.g., click on a push button).

Callback string (GUIDE sets this property)

Control action. A routine that executes whenever you activate the uicontrol
object (e.g., when you click on a push button or move a slider). Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

To execute the callback routine for an editable text control, type in the desired
text, then either:

• Move the focus off the object (click the mouse someplace else in the GUI),

• For a single line editable text box, press Return, or

• For a multiline editable text box, press Ctl-Return.

Uicontrol Properties

2-572

Callback routines defined for frames and static text do not execute because no
action is associated with these objects.

CData matrix

Truecolor image displayed on control. A three-dimensional matrix of RGB
values that defines a truecolor image displayed on either a push button or
toggle button. Each value must be between 0.0 and 1.0.

Children matrix

The empty matrix; uicontrol objects have no children.

Clipping {on} | off

This property has no effect on uicontrols.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a uicontrol object. You
must define this property as a default value for uicontrols. For example, this
statement:

set(0,'DefaultUicontrolCreateFcn',...
'set(gcf,''IntegerHandle'',''off'')')

defines a default value on the root level that sets the figure IntegerHandle
property to off whenever you create a uicontrol object. MATLAB executes this
routine after setting all property values for the uicontrol. Setting this property
on an existing uicontrol object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete uicontrol callback routine. A callback routine that executes when you
delete the uicontrol object (e.g., when you issue a delete command or clear the
figure containing the uicontrol). MATLAB executes the routine before
destroying the object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

Uicontrol Properties

2-573

Enable {on} | inactive | off

Enable or disable the uicontrol. This property controls how uicontrols respond
to mouse button clicks, including which callback routines execute.

• on – The uicontrol is operational (the default).

• inactive – The uicontrol is not operational, but looks the same as when
Enable is on.

• off – The uicontrol is not operational and its label (set by the string
property) is grayed out.

When you left-click on a uicontrol whose Enable property is on, MATLAB
performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Executes the control’s Callback routine.

3 Does not set the figure’s CurrentPoint property and does not execute either
the control’s ButtonDownFcn or the figure’s WindowButtonDownFcn callback.

When you left-click on a uicontrol whose Enable property is inactive or off,
or when you right-click on a uicontrol whose Enable property has any value,
MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Sets the figure’s CurrentPoint property.

3 Executes the figure’s WindowButtonDownFcn callback.

4 On a right-click, if the uicontrol is associated with a context menu, posts the
context menu.

5 Executes the control’s ButtonDownFcn callback.

6 Executes the selected context menu item’s Callback routine.

7 Does not execute the control’s Callback routine.

Setting this property to inactive or off enables you to implement object
dragging or resizing using the ButtonDownFcn callback routine.

Extent position rectangle (read only)

Size of uicontrol character string. A four-element vector that defines the size
and position of the character string used to label the uicontrol. It has the form:

Uicontrol Properties

2-574

[0,0,width,height]

The first two elements are always zero. width and height are the dimensions
of the rectangle. All measurements are in units specified by the Units property.

Since the Extent property is defined in the same units as the uicontrol itself,
you can use this property to determine proper sizing for the uicontrol with
regard to its label. Do this by

• Defining the String property and selecting the font using the relevant
properties.

• Getting the value of the Extent property.

• Defining the width and height of the Position property to be somewhat
larger than the width and height of the Extent.

For multiline strings, the Extent rectangle encompasses all the lines of text.
For single line strings, the Extent is returned as a single line, even if the string
wraps when displayed on the control.

FontAngle {normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from those
available on your particular system. Setting this property to italic or oblique
selects a slanted version of the font, when it is available on your system.

FontName string

Font family. The name of the font in which to display the String. To display
and print properly, this must be a font that your system supports. The default
font is system dependent.

To use a fixed-width font that looks good in any locale (and displays properly
in Japan, where multibyte character sets are used), set FontName to the string
FixedWidth (this string value is case sensitive):

set(uicontrol_handle, 'FontName', 'FixedWidth')

This parameter value eliminates the need to hard code the name of a
fixed-width font, which may not display text properly on systems that do not
use ASCII character encoding (such as in Japan). A properly written MATLAB
application that needs to use a fixed-width font should set FontName to
FixedWidth and rely on the root FixedWidthFontName property to be set
correctly in the end user’s environment.

Uicontrol Properties

2-575

End users can adapt a MATLAB application to different locales or personal
environments by setting the root FixedWidthFontName property to the
appropriate value for that locale from startup.m. Setting the root
FixedWidthFontName property causes an immediate update of the display to
use the new font.

FontSize size in FontUnits

Font size. A number specifying the size of the font in which to display the
String, in units determined by the FontUnits property. The default point size
is system dependent.

FontUnits {points} | normalized | inches |
centimeters | pixels

Font size units. This property determines the units used by the FontSize
property. Normalized units interpret FontSize as a fraction of the height of the
uicontrol. When you resize the uicontrol, MATLAB modifies the screen
FontSize accordingly. pixels, inches, centimeters, and points are absolute
units (1 point = 1/72 inch).

FontWeight light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a font from
those available on your particular system. Setting this property to bold causes
MATLAB to use a bold version of the font, when it is available on your system.

ForegroundColor ColorSpec

Color of text. This property determines the color of the text defined for the
String property (the uicontrol label). Specify a color using a three-element
RGB vector or one of MATLAB ’s predefined names. The default text color is
black. See ColorSpec for more information on specifying color.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from

Uicontrol Properties

2-576

within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. This property has no effect on uicontrol objects.

HorizontalAlignment left | {center} | right

Horizontal alignment of label string. This property determines the justification
of the text defined for the String property (the uicontrol label):

• left — Text is left justified with respect to the uicontrol.

• center — Text is centered with respect to the uicontrol.

• right — Text is right justified with respect to the uicontrol.

On Microsoft Windows systems, this property affects only edit and text
uicontrols.

Uicontrol Properties

2-577

Interruptible {on} | off

Callback routine interruption mode. If a callback is executing and the user
triggers an event (such as a mouse click) on an object for which a callback is
defined, that callback attempts to interrupt the first callback. MATLAB
processes the callbacks according to these factors:

• The Interruptible property of the object whose callback is executing

• Whether the executing callback contains drawnow, figure, getframe, pause,
or waitfor statements

• The BusyAction property of the object whose callback is waiting to execute

If the Interruptible property of the object whose callback is executing is on
(the default), the callback can be interrupted. The callback interrupts
execution at the next drawnow, figure, getframe, pause, or waitfor statement,
and processes the events in the event queue, which includes the waiting
callback.

If the Interruptible property of the object whose callback is executing is off,
the callback cannot be interrupted (except by certain callbacks; see the note
below). The BusyAction property of the object whose callback is waiting to
execute determines what happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn callback or a
figure’s CloseRequest or ResizeFcn callback, it interrupts an executing
callback regardless of the value of that object’s Interruptible property. The
interrupting callback starts execution at the next drawnow, figure, getframe,
pause, or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are processed
according to the rules described above.

ListboxTop scalar

Index of top-most string displayed in list box. This property applies only to the
listbox style of uicontrol. It specifies which string appears in the top-most
position in a list box that is not large enough to display all list entries.
ListboxTop is an index into the array of strings defined by the String property
and must have a value between 1 and the number of strings. Noninteger values
are fixed to the next lowest integer.

Uicontrol Properties

2-578

Max scalar

Maximum value. This property specifies the largest value allowed for the Value
property. Different styles of uicontrols interpret Max differently:

• Check boxes – Max is the setting of the Value property while the check box is
selected.

• Editable text – If Max − Min > 1, then editable text boxes accept multiline
input. If Max − Min <= 1, then editable text boxes accept only single line input.

• List boxes – If Max − Min > 1, then list boxes allow multiple item selection. If
Max − Min <= 1, then list boxes do not allow multiple item selection.

• Radio buttons – Max is the setting of the Value property when the radio
button is selected.

• Sliders – Max is the maximum slider value and must be greater than the Min
property. The default is 1.

• Toggle buttons – Max is the value of the Value property when the toggle
button is selected. The default is 1.

• Frames, pop-up menus, push buttons, and static text do not use the Max
property.

Min scalar

Minimum value. This property specifies the smallest value allowed for the
Value property. Different styles of uicontrols interpret Min differently:

• Check boxes – Min is the setting of the Value property while the check box is
not selected.

• Editable text – If Max − Min > 1, then editable text boxes accept multiline
input. If Max − Min <= 1, then editable text boxes accept only single line input.

• List boxes – If Max − Min > 1, then list boxes allow multiple item selection. If
Max − Min <= 1, then list boxes allow only single item selection.

• Radio buttons – Min is the setting of the Value property when the radio
button is not selected.

• Sliders – Min is the minimum slider value and must be less than Max. The
default is 0.

• Toggle buttons – Min is the value of the Value property when the toggle
button is not selected. The default is 0.

Uicontrol Properties

2-579

• Frames, pop-up menus, push buttons, and static text do not use the Min
property.

Parent handle

Uicontrol’s parent. The handle of the uicontrol’s parent object. The parent of a
uicontrol object is the figure in which it appears. You can move a uicontrol
object to another figure by setting this property to the handle of the new
parent.

Position position rectangle

Size and location of uicontrol. The rectangle defined by this property specifies
the size and location of the control within the figure window. Specify Position
as

[left bottom width height]

left and bottom are the distance from the lower-left corner of the figure
window to the lower-left corner of the uicontrol object. width and height are
the dimensions of the uicontrol rectangle. All measurements are in units
specified by the Units property.

On Microsoft Windows systems, the height of pop-up menus is automatically
determined by the size of the font. The value you specify for the height of the
Position property has no effect.

The width and height values determine the orientation of sliders. If width is
greater than height, then the slider is oriented horizontally, If height is
greater than width, then the slider is oriented vertically.

Selected on | {off}

Is object selected. When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Object highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Uicontrol Properties

2-580

SliderStep [min_step max_step]

Slider step size. This property controls the amount the slider Value changes
when you click the mouse on the arrow button (min_step) or on the slider
trough (max_step). Specify SliderStep as a two-element vector; each value
must be in the range [0, 1]. The actual step size is a function of the specified
SliderStep and the total slider range (Max − Min). The default, [0.01 0.10],
provides a 1 percent change for clicks on the arrow button and a 10 percent
change for clicks in the trough.

For example, if you create the following slider,

uicontrol('Style','slider','Min',1,'Max',7,...
'SliderStep',[0.1 0.6])

clicking on the arrow button moves the indicator by,

0.1*(7–1)
ans =

0.6000

and clicking in the trough moves the indicator by,

0.6*(7–1)
ans =

3.6000

Note that if the specified step size moves the slider to a value outside the range,
the indicator moves only to the Max or Min value.

See also the Max, Min, and Value properties.

String string

Uicontrol label, list box items, pop-up menu choices. For check boxes, editable
text, push buttons, radio buttons, static text, and toggle buttons, the text
displayed on the object. For list boxes and pop-up menus, the set of entries or
items displayed in the object.

For uicontrol objects that display only one line of text, if the string value is
specified as a cell array of strings or padded string matrix, only the first string
of a cell array or of a padded string matrix is displayed; the rest are ignored.
Vertical slash (‘|’) characters are not interpreted as line breaks and instead
show up in the text displayed in the uicontrol.

Uicontrol Properties

2-581

For multiple line editable text or static text controls, line breaks occur between
each row of the string matrix, each cell of a cell array of strings, and after any
\n characters embedded in the string. Vertical slash (‘|’) characters are not
interpreted as line breaks, and instead show up in the text displayed in the
uicontrol.

For multiple items on a list box or pop-up menu, you can specify items as a cell
array of strings, a padded string matrix, or within a string vector separated by
vertical slash (‘|’) characters.

For editable text, this property value is set to the string entered by the user.

Style {pushbutton} | togglebutton | radiobutton |
checkbox | edit | text | slider | frame |
listbox | popupmenu

Style of uicontrol object to create. The Style property specifies the kind of
uicontrol to create. See the Description section for information on each type.

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

TooltipString string

Content of tooltip for object. The TooltipString property specifies the text of
the tooltip associated with the uicontrol. When the user moves the mouse
pointer over the control and leaves it there, the tooltip is displayed.

Type string (read only)

Class of graphics object. For uicontrol objects, Type is always the string
'uicontrol'.

UIContextMenu handle

Associate a context menu with uicontrol. Assign this property the handle of a
Uicontextmenu object. MATLAB displays the context menu whenever you
right-click over the uicontrol. Use the uicontextmenu function to create the
context menu.

Uicontrol Properties

2-582

Units {pixels} | normalized | inches |
centimeters | points | characters
(Guide default normalized)

Units of measurement. The units MATLAB uses to interpret the Extent and
Position properties. All units are measured from the lower-left corner of the
figure window. Normalized units map the lower-left corner of the figure
window to (0,0) and the upper-right corner to (1.0,1.0). pixels, inches,
centimeters, and points are absolute units (1 point = 1/72 inch). Character
units are characters using the default system font; the width of one character
is the width of the letter x, the height of one character is the distance between
the baselines of two lines of text.

If you change the value of Units, it is good practice to return it to its default
value after completing your computation so as not to affect other functions that
assume Units is set to the default value.

UserData matrix

User-specified data. Any data you want to associate with the uicontrol object.
MATLAB does not use this data, but you can access it using set and get.

Value scalar or vector

Current value of uicontrol. The uicontrol style determines the possible values
this property can have:

• Check boxes set Value to Max when they are on (when selected) and Min when
off (not selected).

• List boxes set Value to a vector of indices corresponding to the selected list
entries, where 1 corresponds to the first item in the list.

• Pop-up menus set Value to the index of the item selected, where 1
corresponds to the first item in the menu. The Examples section shows how
to use the Value property to determine which item has been selected.

• Radio buttons set Value to Max when they are on (when selected) and Min
when off (not selected).

• Sliders set Value to the number indicated by the slider bar.

• Toggle buttons set Value to Max when they are down (selected) and Min when
up (not selected).

• Editable text, frames, push buttons, and static text do not set this property.

Uicontrol Properties

2-583

Set the Value property either interactively with the mouse or through a call to
the set function. The display reflects changes made to Value.

Visible {on} | off

Uicontrol visibility. By default, all uicontrols are visible. When set to off, the
uicontrol is not visible, but still exists and you can query and set its properties.

uigetfile

2-584

2uigetfilePurpose Interactively retrieve a filename

Syntax uigetfile
uigetfile('FilterSpec')
uigetfile('FilterSpec','DialogTitle')
uigetfile('FilterSpec','DialogTitle',x,y)
[fname,pname] = uigetfile(...)

Description uigetfile displays a dialog box used to retrieve a file. The dialog box lists the
files and directories in the current directory.

uigetfile('FilterSpec') displays a dialog box that lists files in the current
directory. FilterSpec determines the initial display of files and can be a full
filename or include the * wildcard. For example, '∗ .m' lists all the MATLAB
M-files. If FilterSpec is a cell array, the first column is use as the list of
extensions, and the second column is used as the list of descriptions.

uigetfile('FilterSpec','DialogTitle') displays a dialog box that has the
title DialogTitle.

uigetfile('FilterSpec','DialogTitle',x,y) positions the dialog box at
position [x,y], where x and y are the distance in pixel units from the left and
top edges of the screen. Note that some platforms may not support dialog box
placement.

[fname,pname] = uigetfile(...) returns the name and path of the file
selected in the dialog box. After you press the Done button, fname contains the
name of the file selected and pname contains the name of the path selected. If
you press the Cancel button or if an error occurs, fname and pname are set to 0.

Remarks If you select a file that does not exist, an error dialog appears. You can then
enter another filename, or press the Cancel button.

Examples This statement displays a dialog box that enables you to retrieve a file. The
statement lists all MATLAB M-files within a selected directory. The name and
path of the selected file are returned in fname and pname. Note that uigetfile
appends All Files(*.*) to the file types when FilterSpec is a string.

[fname,pname] = uigetfile('*.m','Select the M-file');

uigetfile

2-585

Use a cell array to specify a list of extensions and descriptions:

[filename, pathname] = uigetfile(...

{'*.m;*.fig;*.mat;*.mdl','MATLAB Files (*.m,*.fig,*.mat,*.mdl)';

'*.m', 'M-files (*.m)'; ...

'*.fig','Figures (*.fig)'; ...

'*.mat','MAT-files (*.mat)'; ...

'*.mdl','Models (*.mdl)'; ...

'*.*', 'All Files (*.*)'}, ...

'Pick a file');

uigetfile

2-586

Separate multiple extensions with no descriptions with semi-colons.

[filename, pathname] = uigetfile(...

{'*.m';'*.mdl';'*.mat';'*.*'},'File Selector');

uigetfile

2-587

Associate multiple extensions with one description using the first column in
the cell array for the file extensions and the second column as the description:

[filename, pathname] = uigetfile(...

{'*.m;*.fig;*.mat;*.mdl','MATLAB Files (*.m,*.fig,*.mat,*.mdl)';

'*.*', 'All Files (*.*)'}, 'Choose a File');

uigetfile

2-588

This code checks for the existence of the file and returns a message about the
success or failure of the open operation.

[filename, pathname] = uigetfile('*.m', 'Find an M-file');

if isequal(filename,0)|isequal(pathname,0)

disp('File not found')

else

disp(['File ', pathname, filename, ' found'])

end

uigetfile

2-589

The exact appearance of the dialog box depends on your windowing system.

See Also uiputfile

uiimport

2-590

2uiimportPurpose Start the graphical user interface to import functions (Import Wizard)

Syntax uiimport
uiimport(filename)
uiimport('-file')
uiimport('-pastespecial')
S = uiimport(...)

Description uiimport starts the Import Wizard in the current directory, presenting options
to load data from a file or the clipboard.

uiimport(filename) starts the Import Wizard, opening the file specified in
filename. The Import Wizard displays a preview of the data in the file.

uiimport('-file') works as above but presents the file selection dialog first.

uiimport('-pastespecial') works as above but presents the clipboard
contents first.

S = uiimport(...) works as above with resulting variables stored as fields in
the struct S.

Note For ASCII data, you must verify that the Import Wizard correctly
identified the column delimiter.

See Also load, clipboard

uimenu

2-591

2uimenuPurpose Create menus on figure windows

Syntax uimenu('PropertyName',PropertyValue,...)
uimenu(parent,'PropertyName',PropertyValue,...)
handle = uimenu('PropertyName',PropertyValue,...)
handle = uimenu(parent,'PropertyName',PropertyValue,...)

Description uimenu creates a hierarchy of menus and submenus that are displayed in the
figure window’s menu bar. You can also use uimenu to create menu items for
context menus.

handle = uimenu('PropertyName',PropertyValue,...) creates a menu in
the current figure’s menu bar using the values of the specified properties and
assigns the menu handle to handle.

handle = uimenu(parent,'PropertyName',PropertyValue,...) creates a
submenu of a parent menu or a menu item on a context menu specified by
parent and assigns the menu handle to handle. If parent refers to a figure
instead of another uimenu object or a Uicontextmenu, MATLAB creates a new
menu on the referenced figure’s menu bar.

Remarks MATLAB adds the new menu to the existing menu bar. Each menu choice can
itself be a menu that displays its submenu when selected.

uimenu accepts property name/property value pairs, as well as structures and
cell arrays of properties as input arguments. The uimenu Callback property
defines the action taken when you activate the menu item. uimenu optionally
returns the handle to the created uimenu object.

Uimenus only appear in figures whose WindowStyle is normal. If a figure
containing uimenu children is changed to WindowStyle modal, the uimenu
children still exist and are contained in the Children list of the figure, but are
not displayed until the WindowStyle is changed to normal.

The value of the figure MenuBar property affects the location of the uimenu on
the figure menu bar. When MenuBar is figure, a set of built-in menus precedes
the uimenus on the menu bar (MATLAB controls the built-in menus and their
handles are not available to the user). When MenuBar is none, uimenus are the
only items on the menu bar (that is, the built-in menus do not appear).

uimenu

2-592

You can set and query property values after creating the menu using set and
get.

Properties This table lists all properties useful to uimenu objects, grouping them by
function. Each property name acts as a link to a description of the property.

Property Name Property Description Property Value

Controlling Style and Appearance

Checked Menu check indicator Value: on, off
Default: off

ForegroundColor Color of text Value: ColorSpec
Default: [0 0 0]

Label Menu label Value: string

SelectionHighlight Object highlighted when selected Value: on, off
Default: on

Separator Separator line mode Value: on, off
Default: off

Visible Uimenu visibility Value: on, off
Default: on

General Information About the Object

Accelerator Keyboard equivalent Value: character

Children Handles of submenus Value: vector of handles

Enable Enable or disable the uimenu Value: on, off
Default: on

Parent Uimenu object’s parent Value: handle

Tag User-specified object identifier Value: string

Type Class of graphics object Value: string (read-only)
Default: uimenu

uimenu

2-593

Examples This example creates a menu labeled Workspace whose choices allow users to
create a new figure window, save workspace variables, and exit out of
MATLAB. In addition, it defines an accelerator key for the Quit option.

f = uimenu('Label','Workspace');
uimenu(f,'Label','New Figure','Callback','figure');
uimenu(f,'Label','Save','Callback','save');

UserData User-specified data Value: matrix

Controlling the Object Position

Position Relative uimenu position Value: scalar
Default: [1]

Controlling Callback Routine Execution

BusyAction Callback routine interruption Value: cancel, queue
Default: queue

ButtonDownFcn Button press callback routine Value: string

Callback Control action Value: string

CreateFcn Callback routine executed during
object creation

Value: string

DeleteFcn Callback routine executed during
object deletion

Value: string

Interruptible Callback routine interruption mode Value: on, off
Default: on

Controlling Access to Objects

HandleVisibility Whether handle is accessible from
command line and GUIs

Value: on, callback, off
Default: on

HitTest Whether selectable by mouse click Value: on, off
Default: on

Property Name Property Description Property Value

uimenu

2-594

uimenu(f,'Label','Quit','Callback','exit',...
'Separator','on','Accelerator','Q');

Object
Hierarchy

See Also uicontrol, uicontextmenu, gcbo, set, get, figure

Root

UimenuAxes Uicontrol

Figure

Uicontextmenu

Uimenu Uimenu

Uimenu Properties

2-595

2Uimenu PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Settingcreating_plots Default
Property Values.

Uimenu
Properties

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

You can set default uimenu properties on the figure and root levels:

set(0,'DefaultUimenuPropertyName',PropertyValue...)
set(gcf,'DefaultUimenuPropertyName',PropertyValue...)
set(menu_handle,'DefaultUimenuProperty',PropertyValue...)

Where PropertyName is the name of the uimenu property and PropertyValue
is the value you are specifying. Use set and get to access uimenu properties.

Accelerator character

Keyboard equivalent. A character specifying the keyboard equivalent for the
menu item. This allows users to select a particular menu choice by pressing the
specified character in conjunction with another key, instead of selecting the
menu item with the mouse. The key sequence is platform specific:

• For Microsoft Windows systems, the sequence is Ctrl-Accelerator. These
keys are reserved for default menu items: c, v, and x.

• For UNIX systems, the sequence is Ctrl-Accelerator. These keys are
reserved for default menu items: o, p, s, and w.

You can define an accelerator only for menu items that do not have children
menus. Accelerators work only for menu items that directly execute a callback
routine, not items that bring up other menus.

Note that the menu item does not have to be displayed (e.g., a submenu) for the
accelerator key to work. However, the window focus must be in the figure when
the key sequence is entered.

Uimenu Properties

2-596

BusyAction cancel | {queue}

Callback routine interruption. If a callback is executing and the user triggers
an event (such as a mouse click) on an object for which a callback is defined,
that callback attempts to interrupt the first callback. The first callback can be
interrupted only at a drawnow, figure, getframe, pause, or waitfor command;
if the callback does not contain any of these commands, it cannot be
interrupted.

If the Interruptible property of the object whose callback is executing is off
(the default value is on), the callback cannot be interrupted (except by certain
callbacks; see the note below). The BusyAction property of the object whose
callback is waiting to execute determines what happens to the callback:

• If the value is queue, the callback is added to the event queue and executes
after the first callback finishes execution.

• If the value is cancel, the event is discarded and the callback is not executed.

Note If the interrupting callback is a DeleteFcn or CreateFcn callback or a
figure’s CloseRequest or ResizeFcn callback, it interrupts an executing
callback regardless of the value of that object’s Interruptible property. The
interrupting callback starts execution at the next drawnow, figure, getframe,
pause, or waitfor statement.

ButtonDownFcn string

The button down function has no effect on uimenu objects.

Callback string

Menu action. A callback routine that executes whenever you select the menu.
Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

A menu with children (submenus) executes its callback routine before
displaying the submenus. A menu without children executes its callback
routine when you release the mouse button (i.e., on the button up event).

Uimenu Properties

2-597

Checked on | {off}

Menu check indicator. Setting this property to on places a check mark next to
the corresponding menu item. Setting it to off removes the check mark. You
can use this feature to create menus that indicate the state of a particular
option. Note that there is no formal mechanism for indicating that an
unchecked menu item will become checked when selected. Also, this property
does not check top level menus or submenus, although you can change the
value of the property for these menus.

Children vector of handles

Handles of submenus. A vector containing the handles of all children of the
uimenu object. The children objects of uimenus are other uimenus, which
function as submenus. You can use this property to re-order the menus.

Clipping {on} | off

Clipping has no effect on uimenu objects.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a uimenu object. You
must define this property as a default value for uimenus. For example, the
statement,

set(0,'DefaultUimenuCreateFcn','set(gcf,''IntegerHandle'',...
''off''’))

defines a default value on the root level that sets the figure IntegerHandle
property to off whenever you create a uimenu object. Setting this property on
an existing uimenu object has no effect. MATLAB executes this routine after
setting all property values for the uimenu.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete uimenu callback routine. A callback routine that executes when you
delete the uimenu object (e.g., when you issue a delete command or cause the
figure containing the uimenu to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available to the callback
routine.

Uimenu Properties

2-598

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which is more simply queried using
gcbo.

Enable {on} | off

Enable or disable the uimenu. This property controls whether a menu item can
be selected. When not enabled (set to off), the menu Label appears dimmed,
indicating the user cannot select it.

ForegroundColor ColorSpec X-Windows only

Color of menu label string. This property determines color of the text defined
for the Label property. Specify a color using a three-element RGB vector or one
of MATLAB’s predefined names. The default text color is black. See ColorSpec
for more information on specifying color.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provide a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

Uimenu Properties

2-599

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. This property has no effect on uimenu objects.

Interruptible {on} | off

Callback routine interruption mode. If a callback is executing and the user
triggers an event (such as a mouse click) on an object for which a callback is
defined, that callback attempts to interrupt the first callback. MATLAB
processes the callbacks according to these factors:

• The Interruptible property of the object whose callback is executing

• Whether the executing callback contains drawnow, figure, getframe, pause,
or waitfor statements

• The BusyAction property of the object whose callback is waiting to execute

If the Interruptible property of the object whose callback is executing is on
(the default), the callback can be interrupted. The callback interrupts
execution at the next drawnow, figure, getframe, pause, or waitfor statement,
and processes the events in the event queue, which includes the waiting
callback.

If the Interruptible property of the object whose callback is executing is off,
the callback cannot be interrupted (except by certain callbacks; see the note
below). The BusyAction property of the object whose callback is waiting to
execute determines what happens to the callback.

Uimenu Properties

2-600

Note If the interrupting callback is a DeleteFcn or CreateFcn callback or a
figure’s CloseRequest or ResizeFcn callback, it interrupts an executing
callback regardless of the value of that object’s Interruptible property. The
interrupting callback starts execution at the next drawnow, figure, getframe,
pause, or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are processed
according to the rules described above.

Label string

Menu label. A string specifying the text label on the menu item. You can specify
a mnemonic using the “&” character. Whatever character follows the “&” in the
string appears underlined and selects the menu item when you type that
character while the menu is visible. The “&” character is not displayed. To
display the “&” character in a label, use two “&” characters in the string:

‘O&pen selection’ yields Open selection

‘Save && Go’ yields Save & Go

Parent handle

Uimenu’s parent. The handle of the uimenu’s parent object. The parent of a
uimenu object is the figure on whose menu bar it displays, or the uimenu of
which it is a submenu. You can move a uimenu object to another figure by
setting this property to the handle of the new parent.

Position scalar

Relative menu position. The value of Position indicates placement on the
menu bar or within a menu. Top-level menus are placed from left to right on
the menu bar according to the value of their Position property, with 1
representing the left-most position. The individual items within a given menu
are placed from top to bottom according to the value of their Position property,
with 1 representing the top-most position.

Selected on | {off}

This property is not used for uimenu objects.

Uimenu Properties

2-601

SelectionHighlight on | off

This property is not used for uimenu objects.

Separator on | {off}

Separator line mode. Setting this property to on draws a dividing line above the
menu item.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For uimenu objects, Type is always the string
'uimenu'.

UserData matrix

User-specified data. Any matrix you want to associate with the uimenu object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Uimenu visibility. By default, all uimenus are visible. When set to off, the
uimenu is not visible, but still exists and you can query and set its properties.

uint8, uint16, uint32

2-602

2uint8, uint16, uint32Purpose Convert to unsigned integer

Syntax i = uint8(x)
i = uint16(x)
i = uint32(x)

Description i = uint*(x) converts the vector x into an unsigned integer. x can be any
numeric object (such as a double). The results of a uint* operation are shown
in the next table.

A value of x above or below the range for a class is mapped to one of the
endpoints of the range. If x is already an unsigned integer of the same class,
uint* has no effect.

The uint* class is primarily meant to store integer values. Most operations
that manipulate arrays without changing their elements are defined (examples
are reshape, size, the logical and relational operators, subscripted
assignment, and subscripted reference). No math operations except for sum are
defined for uint* since such operations are ambiguous on the boundary of the
set (for example they could wrap or truncate there). You can define your own
methods for uint* (as you can for any object) by placing the appropriately
named method in an @uint* directory within a directory on your path.

Type help datatypes for the names of the methods you can overload.

See Also double, int8, int16, int32, single

Operatio
n

Output
Range

Output Type Bytes per
Element

Output Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65535 Unsigned 16-bit
integer

2 uint16

uint32 0 to
4294967295

Unsigned 32-bit
integer

4 uint32

uiputfile

2-603

2uiputfilePurpose Interactively select a file for writing

Syntax uiputfile
uiputfile('InitFile')
uiputfile('InitFile','DialogTitle')
uiputfile('InitFile','DialogTitle',x,y)
[fname,pname] = uiputfile(...)

Description uiputfile displays a dialog box used to select a file for writing. The dialog box
lists the files and directories in the current directory.

uiputfile('InitFile') displays a dialog box that contains a list of files in the
current directory determined by InitFile. InitFile is a full filename or
includes the * wildcard. For example, specifying '∗ .m' (the default) causes the
dialog box list to show only MATLAB M-files.

uiputfile('InitFile','DialogTitle') displays a dialog box that has the
title DialogTitle.

uiputfile('InitFile','DialogTitle',x,y) positions the dialog box at
screen position [x,y], where x and y are the distance in pixel units from the left
and top edges of the screen. Note that positioning may not work on all
platforms.

[fname,pname] = uiputfile(...) returns the name and path of the file
selected in the dialog box. If you press the Cancel button or an error occurs,
fname and pname are set to 0.

Remarks If you select a file that already exists, a prompt asks whether you want to
overwrite the file. If you choose to, the function successfully returns but does
not delete the existing file (which is the responsibility of the calling routines).
If you select Cancel in response to the prompt, the function returns control back
to the dialog box so you can enter another filename.

Examples This statement displays a dialog box titled 'Save file name' (the exact
appearance of the dialog box depends on your windowing system) with the
filename animinit.m.

uiputfile

2-604

[newfile,newpath] = uiputfile('animinit.m','Save file name');

See Also uigetfile

Microsoft
Windows

uiresume, uiwait

2-605

2uiresume, uiwaitPurpose Control program execution

Syntax uiwait(h)
uiwait
uiresume(h)

Description The uiwait and uiresume functions block and resume MATLAB program
execution.

uiwait blocks execution until uiresume is called or the current figure is
deleted. This syntax is the same as uiwait(gcf).

uiwait(h) blocks execution until uiresume is called or the figure h is deleted.

uiresume(h) resumes the M-file execution that uiwait suspended.

Remarks When creating a dialog, you should have a uicontrol with a callback that calls
uiresume or a callback that destroys the dialog box. These are the only methods
that resume program execution after the uiwait function blocks execution.

uiwait is a convenient way to use the waitfor command. You typically use it
in conjunction with a dialog box. It provides a way to block the execution of the
M-file that created the dialog, until the user responds to the dialog box. When
used in conjunction with a modal dialog, uiwait/uiresume can block the
execution of the M-file and restrict user interaction to the dialog only.

See Also uicontrol, uimenu, waitfor, figure, dialog

uisetcolor

2-606

2uisetcolorPurpose Set an object’s ColorSpec from a dialog box interactively

Syntax c = uisetcolor(h_or_c, 'DialogTitle');

Description uisetcolor displays a dialog box for the user to fill in, then applies the selected
color to the appropriate property of the graphics object identified by the first
argument.

h_or_c can be either a handle to a graphics object or an RGB triple. If you
specify a handle, it must specify a graphics object that have a Color property.
If you specify a color, it must be a valid RGB triple (e.g., [1 0 0] for red). The
color specified is used to initialize the dialog box. If no initial RGB is specified,
the dialog box initializes the color to black.

DialogTitle is a string that is used as the title of the dialog box.

c is the RGB value selected by the user. If the user presses Cancel from the
dialog box, or if any error occurs, c is set to the input RGB triple, if provided;
otherwise, it is set to 0.

See Also ColorSpec

uisetfont

2-607

2uisetfontPurpose Modify font characteristics for objects interactively

Syntax uisetfont
uisetfont(h)
uisetfont(S)
uisetfont(h,'DialogTitle')
uisetfont(S,'DialogTitle')
S = uisetfont(...)

Description uisetfont enables you to change font properties (FontName, FontUnits,
FontSize, FontWeight, and FontAngle) for a text, axes, or uicontrol object. The
function returns a structure consisting of font properties and values. You can
specify an alternate title for the dialog box.

uisetfont displays the dialog box and returns the selected font properties.

uisetfont(h) displays a dialog box, initializing the font property values with
the values of those properties for the object whose handle is h. Selected font
property values are applied to the current object. If a second argument is
supplied, it specifies a name for the dialog box.

uisetfont(S) displays a dialog box, initializing the font property values with
the values defined for the specified structure (S). S must define legal values for
one or more of these properties: FontName, FontUnits, FontSize, FontWeight,
and FontAngle and the field names must match the property names exactly. If
other properties are defined, they are ignored. If a second argument is
supplied, it specifies a name for the dialog box.

uisetfont('DialogTitle') displays a dialog box with the title DialogTitle
and returns the values of the font properties selected in the dialog box.

If a left-hand argument is specified, the properties FontName, FontUnits,
FontSize, FontWeight, and FontAngle are returned as fields in a structure. If
the user presses Cancel from the dialog box or if an error occurs, the output
value is set to 0.

Example These statements create a text object, then display a dialog box (labeled
Update Font) that enables you to change the font characteristics:

uisetfont

2-608

h = text(.5,.5,'Figure Annotation');
uisetfont(h,'Update Font')

These statements create two push buttons, then set the font properties of one
based on the values set for the other:

% Create push button with string ABC
c1 = uicontrol('Style', 'pushbutton', ...

'Position', [10 10 100 20], 'String', 'ABC');
% Create push button with string XYZ
c2 = uicontrol('Style', 'pushbutton', ...

'Position', [10 50 100 20], 'String', 'XYZ');
% Display set font dialog box for c1, make selections, save to d
d = uisetfont(c1)
% Apply those settings to c2
set(c2, d)

See Also axes, text, uicontrol

undocheckout

2-609

2undocheckoutPurpose Undo previous checkout from source control system

Graphical
Interface

As an alternative to the undocheckout function, use Source Control Undo
Checkout in the Editor, Simulink, or Stateflow File menu.

Syntax undocheckout('filename')
undocheckout({'filename1','filename2','filename3', ...})

Description undocheckout('filename') makes the file filename available for checkout,
where filename does not reflect any of the changes you made after you last
checked it out. filename must be the full pathname for the file.

undocheckout({'filename1','filename2','filename3', ...}) makes the
filename1 through filenamen available for checkout, where the files do not
reflect any of the changes you made after you last checked them out. Use the
full pathnames for the files.

Examples Typing

undocheckout({'/matlab/mymfiles/clock.m', ...
'/matlab/mymfiles/calendar.m'})

undoes the checkouts of /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control system.

See Also checkin, checkout

union

2-610

2unionPurpose Set union of two vectors

Syntax c = union(A,B)
c = union(A,B,'rows')
[c,ia,ib] = union(...)

Description c = union(A,B) returns the combined values from A and B but with no
repetitions. The resulting vector is sorted in ascending order. In set theoretic
terms, c = A ∪ B. A and B can be cell arrays of strings.

c = union(A,B,'rows') when A and B are matrices with the same number of
columns returns the combined rows from A and B with no repetitions.

[c,ia,ib] = union(...) also returns index vectors ia and ib such that
c = a(ia) ∪ b(ib), or for row combinations, c = a(ia,:) ∪ b(ib,:). If a
value appears in both a and b, union indexes its occurrence in b. If a value
appears more than once in b or in a (but not in b), union indexes the last
occurrence of the value.

Examples a = [-1 0 2 4 6];
b = [-1 0 1 3];
[c,ia,ib] = union(a,b);
c =

 -1 0 1 2 3 4 6

ia =

 3 4 5

ib =

 1 2 3 4

See Also intersect, setdiff, setxor, unique

unique

2-611

2uniquePurpose Unique elements of a vector

Syntax b = unique(A)
b = unique(A,'rows')
[b,m,n] = unique(...)

Description b = unique(A) returns the same values as in A but with no repetitions. The
resulting vector is sorted in ascending order. A can be a cell array of strings.

b = unique(A,'rows') returns the unique rows of A.

[b,m,n] = unique(...) also returns index vectors m and n such that b = a(m)
and a = b(n). Each element of m is the greatest subscript such that b = a(m).
For row combinations, b = a(m,:) and a = b(n,:).

Examples a = [1 1 5 6 2 3 3 9 8 6 2 4]
a =
1 1 5 6 2 3 3 9 8 6 2 4

[b,m,n] = unique(a)
b =

1 2 3 4 5 6 8 9
m =

2 11 7 12 3 10 9 8
n =
1 1 5 6 2 3 3 8 7 6 2 4

a(m)
ans =

1 2 3 4 5 6 8 9

b(n)
ans =
1 1 5 6 2 3 3 9 8 6 2 4

Because NaNs are not equal to each other, unique treats them as unique
elements.

unique

2-612

unique([1 1 NaN NaN])
ans =
 1 NaN NaN

See Also intersect, ismember, setdiff, setxor, union

unix

2-613

2unixPurpose Execute a UNIX command and return result

Syntax unix command
status = unix('command')
[status,result] = unix('command')
[status,result] = unix('command','-echo')

Description unix command calls upon the UNIX operating system to execute the given
command.

status = unix('command') returns completion status to the status variable.

[status, result] = unix('command') returns the standard output to the
result variable, in addition to completion status.

[status,result] = unix('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Examples The following example lists all users that are currently logged in. It returns a
zero (success) in s and a string containing the list of users in w.

[s,w] = unix('who');

The next example returns a nonzero value in s to indicate failure and returns
an error message in w because why is not a UNIX command.

[s,w] = unix('why')
s =
 1
w =
why: Command not found.

When including the -echo flag, MATLAB displays the results of the command
in the Command Window as it executes as well as assigning the results to the
return variable, w.

[s,w] = unix('who','-echo');

See Also Special Characters

unmkpp

2-614

2unmkppPurpose Piecewise polynomial details

Syntax [breaks,coefs,l,k,d] = unmkpp(pp)

Description [breaks,coefs,l,k,d] = unmkpp(pp) extracts, from the piecewise
polynomial pp, its breaks breaks, coefficients coefs, number of pieces l, order
k, and dimension d of its target. Create pp using spline or the spline utility
mkpp.

Examples This example creates a description of the quadratic polynomial

as a piecewise polynomial pp, then extracts the details of that description.

pp = mkpp([-8 -4],[-1/4 1 0]);
[breaks,coefs,l,k,d] = unmkpp(pp)

breaks =
 -8 -4

coefs =
 -0.2500 1.0000 0

l =
 1

k =
 3

d =
 1

See Also mkpp, ppval, spline

x–
2

4
--------- x+

unwrap

2-615

2unwrapPurpose Correct phase angles

Syntax Q = unwrap(P)
Q = unwrap(P,tol)
Q = unwrap(P,[],dim)
Q = unwrap(P,tol,dim)

Description Q = unwrap(P) corrects the radian phase angles in array P by adding multiples
of when absolute jumps between consecutive array elements are greater
than radians. If P is a matrix, unwrap operates columnwise. If P is a
multidimensional array, unwrap operates on the first nonsingleton dimension.

Q = unwrap(P,tol) uses a jump tolerance tol instead of the default value, .

Q = unwrap(P,[],dim) unwraps along dim using the default tolerance.

Q = unwrap(P,tol,dim) uses a jump tolerance of tol.

Examples Array P features smoothly increasing phase angles except for discontinuities at
elements (3,1) and (1,2).

P =
 0 7.0686 1.5708 2.3562
 0.1963 0.9817 1.7671 2.5525

6.6759 1.1781 1.9635 2.7489
 0.5890 1.3744 2.1598 2.9452

The function Q = unwrap(P) eliminates these discontinuities.

Q =
 0 0.7854 1.5708 2.3562
 0.1963 0.9817 1.7671 2.5525
 0.3927 1.1781 1.9635 2.7489
 0.5890 1.3744 2.1598 2.9452

Limitations The unwrap function detects branch cut crossings, but it can be fooled by
sparse, rapidly changing phase values.

See Also abs, angle

2± π
π

π

upper

2-616

2upperPurpose Convert string to upper case

Syntax t = upper('str')
B = upper(A)

Description t = upper('str') converts any lower-case characters in the string str to the
corresponding upper-case characters and leaves all other characters
unchanged.

B = upper(A) when A is a cell array of strings, returns a cell array the same
size as A containing the result of applying upper to each string within A.

Examples upper('attention!') is ATTENTION!.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also lower

usejava

2-617

2usejavaPurpose Determine if a Java feature is supported in MATLAB

Syntax usejava(feature)

Description usejava(feature) returns 1 if the specified feature is supported and 0
otherwise. Possible feature arguments are shown in the following table.

1. Java’s GUI components in the Abstract Window Tookit
2. Java’s lightweight GUI components in the Java Foundation Classes

Examples The following conditional code ensures that the AWT’s GUI components are
available before the M-file attempts to display a Java Frame.

if usejava('awt')
 myFrame = java.awt.Frame;
else
 disp('Unable to open a Java Frame');
end

The next example is part of an M-file that includes Java code. It fails gracefully
when run in a MATLAB session that does not have access to a JVM.

if ~usejava('jvm')
 error([mfilename ' requires Java to run.']);
end

See Also javachk

Feature Description

'awt' Abstract Window Toolkit components1 are available

'desktop' The MATLAB interactive desktop is running

'jvm' The Java Virtual Machine is running

'swing' Swing components2 are available

vander

2-618

2vanderPurpose Vandermonde matrix

Syntax A = vander(v)

Description A = vander(v) returns the Vandermonde matrix whose columns are powers of
the vector v, that is, A(i,j) = v(i)^(n-j), where n = length(v).

Examples vander(1:.5:3)

ans =

 1.0000 1.0000 1.0000 1.0000 1.0000
 5.0625 3.3750 2.2500 1.5000 1.0000
 16.0000 8.0000 4.0000 2.0000 1.0000
 39.0625 15.6250 6.2500 2.5000 1.0000
 81.0000 27.0000 9.0000 3.0000 1.0000

See Also gallery

var

2-619

2varPurpose Variance

Syntax var(X)
var(X,1)
var(X,w)

Description var(X) returns the variance of X for vectors. For matrices, var(X)is a row
vector containing the variance of each column of X. var(X) normalizes by N-1
where N is the sequence length. This makes var(X) the best unbiased estimate
of the variance if X is a sample from a normal distribution.

var(X,1) normalizes by N and produces the second moment of the sample
about its mean.

var(X,W) computes the variance using the weight vector W. The number of
elements in W must equal the number of rows in X unless W = 1, which is treated
as a short-cut for a vector of ones. The elements of W must be positive. var
normalizes W by dividing each element in W by the sum of all its elements.

The variance is the square of the standard deviation (STD).

See Also corrcoef, cov, std

varargin, varargout

2-620

2varargin, varargoutPurpose Pass or return variable numbers of arguments

Syntax function varargout = foo(n)
function y = bar(varargin)

Description function varargout = foo(n) returns a variable number of arguments from
function foo.m.

function y = bar(varargin) accepts a variable number of arguments into
function bar.m.

The varargin and varargout statements are used only inside a function M-file
to contain the optional arguments to the function. Each must be declared as the
last argument to a function, collecting all the inputs or outputs from that point
onwards. In the declaration, varargin and varargout must be lowercase.

Examples The function

function myplot(x,varargin)
plot(x,varargin{:})

collects all the inputs starting with the second input into the variable
varargin. myplot uses the comma-separated list syntax varargin{:} to pass
the optional parameters to plot. The call

myplot(sin(0:.1:1),'color',[.5 .7 .3],'linestyle',':')

results in varargin being a 1-by-4 cell array containing the values 'color',
[.5 .7 .3], 'linestyle', and ':'.

The function

function [s,varargout] = mysize(x)
nout = max(nargout,1)-1;
s = size(x);
for k=1:nout, varargout(k) = {s(k)}; end

returns the size vector and, optionally, individual sizes. So

[s,rows,cols] = mysize(rand(4,5));

returns s = [4 5], rows = 4, cols = 5.

varargin, varargout

2-621

See Also nargin, nargout, nargchk

vectorize

2-622

2vectorizePurpose Vectorize expression

Syntax vectorize(s)
vectorize(fun)

Description vectorize(s) where s is a string expression, inserts a . before any ^, * or / in
s. The result is a character string.

vectorize(fun) when fun is an inline function object, vectorizes the formula
for fun. The result is the vectorized version of the inline function.

See Also inline, cd, dbtype, delete, dir, partialpath, path, what, who

ver

2-623

2verPurpose Display version information for MATLAB, Simulink, and toolboxes

Graphical
Interface

As an alternative to the ver function, select About from the Help menu in any
product that has a Help menu.

Syntax ver
ver toolbox
v = ver('toolbox')

Description ver displays the current version numbers and release dates for MATLAB,
Simulink, and all toolboxes.

ver toolbox displays the current version number and release date for the
toolbox specified by toolbox. The name, toolbox, corresponds to the directory
name that holds the Contents.m file for that toolbox. For example, Contents.m
for the Fuzzy Logic Toolbox resides in the fuzzy directory. You therefore use
ver fuzzy to obtain the version of this toolbox.

v = ver('toolbox') returns the version information in structure array, v,
having fields Name, Version, Release, and Date.

Remarks See comments near the top of ver.m for information on how your own toolboxes
can use the ver function. Type the following at the MATLAB command prompt.

type ver.m

Examples To return version information for the Fuzzy Logic Toolbox,

ver fuzzy
Fuzzy Logic Toolbox Version 2.0.1 (R11) 16-Sep-1998

To return version information for MATLAB in a structure array, v,

v = ver('matlab')
v =
 Name: 'MATLAB Toolbox'
 Version: '6.0'
 Release: '(R12)'
 Date: '30-Dec-1999'

ver

2-624

See Also help, version, whatsnew

Also, type help info at the Command Window prompt.

version

2-625

2versionPurpose Get MATLAB version number

Graphical
Interface

As an alternative to the version function, select About from the Help menu in
the MATLAB desktop.

Syntax version
version -java
v = version
[v,d] = version

Description version displays the MATLAB version number.

version -java displays the version of the Java VM used by MATLAB.

v = version returns a string v containing the MATLAB version number.

[v,d] = version also returns a string d containing the date of the version.

Examples [v,d]=version

v =
6.0.0.60356 (R12)

d =
May 2 2000

See Also help, ver, whatsnew

Also, type help info at the Command Window prompt.

vertcat

2-626

2vertcatPurpose Vertical concatenation

Syntax C = vertcat(A1,A2,...)

Description C = vertcat(A1,A2,...) vertically concatenates matrices A1, A2, and so on.
All matrices in the argument list must have the same number of columns.

vertcat concatenates N-dimensional arrays along the first dimension. The
remaining dimensions must match.

MATLAB calls C = vertcat(A1,A2,...) for the syntax C = [A1;A2;...]when
any of A1, A2, etc. is an object.

Examples Create a 5-by-3 matrix, A, and a 3-by-3 matrix, B. Then vertically concatenate
A and B.

A = magic(5); % Create 5-by-3 matrix, A
A(:,4:5) = []

A =

 17 24 1
 23 5 7
 4 6 13
 10 12 19
 11 18 25

B = magic(3)*100 % Create 3-by-3 matrix, B

B =

 800 100 600
 300 500 700
 400 900 200

C = vertcat(A,B) % Vertically concatenate A and B

C =

vertcat

2-627

 17 24 1
 23 5 7
 4 6 13
 10 12 19
 11 18 25
 800 100 600
 300 500 700
 400 900 200

See Also horzcat, cat

view

2-628

2viewPurpose Viewpoint specification

Syntax view(az,el)
view([az,el])
view([x,y,z])
view(2)
view(3)
view(T)

[az,el] = view
T = view

Description The position of the viewer (the viewpoint) determines the orientation of the
axes. You specify the viewpoint in terms of azimuth and elevation, or by a point
in three-dimensional space.

view(az,el) and view([az,el]) set the viewing angle for a
three-dimensional plot. The azimuth, az, is the horizontal rotation about the
z-axis as measured in degrees from the negative y-axis. Positive values indicate
counterclockwise rotation of the viewpoint. el is the vertical elevation of the
viewpoint in degrees. Positive values of elevation correspond to moving above
the object; negative values correspond to moving below the object.

view([x,y,z]) sets the viewpoint to the Cartesian coordinates x, y, and z. The
magnitude of (x,y,z) is ignored.

view(2) sets the default two-dimensional view, az = 0, el = 90.

view(3) sets the default three-dimensional view, az = –37.5, el = 30.

view(T) sets the view according to the transformation matrix T, which is a
4-by-4 matrix such as a perspective transformation generated by viewmtx.

[az,el] = view returns the current azimuth and elevation.

T = view returns the current 4-by-4 transformation matrix.

view

2-629

Remarks Azimuth is a polar angle in the x-y plane, with positive angles indicating coun-
terclockwise rotation of the viewpoint. Elevation is the angle above (positive
angle) or below (negative angle) the x-y plane.

This diagram illustrates the coordinate system. The arrows indicate positive
directions.

Examples View the object from directly overhead.

az = 0;
el = 90;
view(az, el);

Set the view along the y-axis, with the x-axis extending horizontally and the
z-axis extending vertically in the figure.

view([0 0]);

Rotate the view about the z-axis by 180°.

az = 180;
el = 90;
view(az, el);

See Also viewmtx, axes, rotate3d

Center of

Viewpoint

z

x

y

Azimuth

Elevation

-y

Plot Box

view

2-630

axes graphics object properties: CameraPosition, CameraTarget,
CameraViewAngle, Projection.

viewmtx

2-631

2viewmtxPurpose View transformation matrices

Syntax T = viewmtx(az,el)
T = viewmtx(az,el,phi)
T = viewmtx(az,el,phi,xc)

Description viewmtx computes a 4-by-4 orthographic or perspective transformation matrix
that projects four-dimensional homogeneous vectors onto a two-dimensional
view surface (e.g., your computer screen).

T = viewmtx(az,el) returns an orthographic transformation matrix
corresponding to azimuth az and elevation el. az is the azimuth (i.e.,
horizontal rotation) of the viewpoint in degrees. el is the elevation of the
viewpoint in degrees. This returns the same matrix as the commands

view(az,el)
T = view

but does not change the current view.

T = viewmtx(az,el,phi) returns a perspective transformation matrix. phi is
the perspective viewing angle in degrees. phi is the subtended view angle of the
normalized plot cube (in degrees) and controls the amount of perspective
distortion.

You can use the matrix returned to set the view transformation with view(T).
The 4-by-4 perspective transformation matrix transforms four-dimensional
homogeneous vectors into unnormalized vectors of the form (x,y,z,w), where w is
not equal to 1. The x- and y-components of the normalized vector (x/w, y/w, z/w,
1) are the desired two-dimensional components (see example below).

Phi Description

0 degrees Orthographic projection

10 degrees Similar to telephoto lens

25 degrees Similar to normal lens

60 degrees Similar to wide angle lens

viewmtx

2-632

T = viewmtx(az,el,phi,xc) returns the perspective transformation matrix
using xc as the target point within the normalized plot cube (i.e., the camera is
looking at the point xc). xc is the target point that is the center of the view. You
specify the point as a three-element vector, xc = [xc,yc,zc], in the interval
[0,1]. The default value is xc = [0,0,0].

Remarks A four-dimensional homogenous vector is formed by appending a 1 to the
corresponding three-dimensional vector. For example, [x,y,z,1] is the
four-dimensional vector corresponding to the three-dimensional point [x,y,z].

Examples Determine the projected two-dimensional vector corresponding to the
three-dimensional point (0.5,0.0,-3.0) using the default view direction. Note
that the point is a column vector.

A = viewmtx(-37.5,30);
x4d = [.5 0 -3 1]';
x2d = A∗ x4d;
x2d = x2d(1:2)
x2d =

0.3967
-2.4459

Vectors that trace the edges of a unit cube are

x = [0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0];
y = [0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1];
z = [0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0];

Transform the points in these vectors to the screen, then plot the object.

A = viewmtx(-37.5,30);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:);
y2(:) = x2d(2,:);

viewmtx

2-633

plot(x2,y2)

Use a perspective transformation with a 25 degree viewing angle:

A = viewmtx(-37.5,30,25);
x4d = [.5 0 -3 1]';
x2d = A∗ x4d;
x2d = x2d(1:2)/x2d(4) % Normalize
x2d =

0.1777
-1.8858

Transform the cube vectors to the screen and plot the object:

A = viewmtx(-37.5,30,25);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:)./x2d(4,:);
y2(:) = x2d(2,:)./x2d(4,:);

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

viewmtx

2-634

plot(x2,y2)

See Also view

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

volumebounds

2-635

2volumeboundsPurpose Returns coordinate and color limits for volume data

Syntax lims = volumebounds(X,Y,Z,V)
lims = volumebounds(X,Y,Z,U,V,W)
lims = volumebounds(V), lims = volumebounds(U,V,W)

Description lims = volumebounds(X,Y,Z,V) returns the x,y,z and color limits of the
current axes for scalar data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax cmin cmax]

You can pass this vector to the axis command.

lims = volumebounds(X,Y,Z,U,V,W) returns the x, y, and z limits of the
current axes for vector data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax]

lims = volumebounds(V), lims = volumebounds(U,V,W) assumes X, Y, and
Z are determined by the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(V).

Examples This example uses volumebounds to set the axis and color limits for an
isosurface generated by the flow function.

[x y z v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
daspect([1 1 1])
isocolors(x,y,z,flipdim(v,2),p)
shading interp
axis(volumebounds(x,y,z,v))
view(3)
camlight
lighting phong

volumebounds

2-636

See Also isosurface, streamslice

voronoi

2-637

2voronoiPurpose Voronoi diagram

Syntax voronoi(x,y)
voronoi(x,y,TRI)
voronoi(...,'LineSpec')
h = voronoi(...)
[vx,vy] = voronoi(...)

Definition Consider a set of coplanar points . For each point in the set , you can
draw a boundary enclosing all the intermediate points lying closer to than
to other points in the set . Such a boundary is called a Voronoi polygon, and
the set of all Voronoi polygons for a given point set is called a Voronoi diagram.

Description voronoi(x,y) plots the bounded cells of the Voronoi diagram for the points x,y.
Cells that contain a point at infinity are unbounded and are not plotted.

voronoi(x,y,TRI) uses the triangulation TRI instead of computing it via
delaunay.

voronoi(...,'LineSpec') plots the diagram with color and line style
specified.

h = voronoi(...) returns, in h, handles to the line objects created.

[vx,vy] = voronoi(...) returns the finite vertices of the Voronoi edges in vx
and vy so that plot(vx,vy,'-',x,y,'.') creates the Voronoi diagram.

Note For the topology of the Voronoi diagram, i.e., the vertices for each
Voronoi cell, use voronoin.

[v,c] = voronoin([x(:) y(:)])

Visualization Use one of these methods to plot a Voronoi diagram:

• If you provide no output argument, voronoi plots the diagram. See
Example 1.

P Px P
Px

P

voronoi

2-638

• To gain more control over color, line style, and other figure properties, use
the syntax [vx,vy] = voronoi(...). This syntax returns the vertices of the
finite Voronoi edges, which you can then plot with the plot function.
See Example 2.

• To fill the cells with color, use voronoin with n = 2 to get the indices of each
cell, and then use patch and other plot functions to generate the figure. Note
that patch does not fill unbounded cells with color. See Example 3.

Examples Example 1. This code uses the voronoi function to plot the Voronoi diagram
for 10 randomly generated points.

rand('state',5);
x = rand(1,10); y = rand(1,10);
voronoi(x,y)

Example 2. This code uses the vertices of the finiteVoronoi edges to plot the
Voronoi diagram for the same 10 points.

rand('state',5);
x = rand(1,10); y = rand(1,10);
[vx, vy] = voronoi(x,y);

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

voronoi

2-639

plot(x,y,'r+',vx,vy,'b-'); axis equal

Note that you can add this code to get the figure shown in Example 1.

 xlim([min(x) max(x)])
 ylim([min(y) max(y)])

Example 3. This code uses voronoin and patch to fill the bounded cells of the
same Voronoi diagram with color.

rand('state',5);
x=rand(10,2);
[v,c]=voronoin(x);
for i = 1:length(c)
if all(c{i}~=1) % If at least one of the indices is 1,
 % then it is an open region and we can't
 % patch that.
patch(v(c{i},1),v(c{i},2),i); % use color i.
end
end
axis equal

−0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

voronoi

2-640

See Also convhull, delaunay, LineSpec, plot, voronoin

−0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

voronoin

2-641

2voronoinPurpose n-D Voronoi diagram

Syntax [V,C] = voronoin(X)

Description [V,C] = voronoin(X) returns Voronoi vertices V and the Voronoi cells C of the
Voronoi diagram of X. V is a numv-by-n array of the numv Voronoi vertices in n-D
space, each row corresponds to a Voronoi vertex. C is a vector cell array where
each element contains the indices into V of the vertices of the corresponding
Voronoi cell. X is an m-by-n array, representing m n-D points, where n > 1 and
m >= n+1.

The first row of V is a point at infinity. If any index in a cell of the cell array is
1, then the corresponding Voronoi cell contains the first point in V, a point at
infinity. This means the Voronoi cell is unbounded.

Note voronoin is based on qhull [2]. For information about qhull, see
http://www.geom.umn.edu/software/qhull/. For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

Visualization You can plot individual bounded cells of an n-D Voronoi diagram. To do this,
use convhulln to compute the vertices of the facets that make up the Voronoi
cell. Then use patch and other plot functions to generate the figure. For an
example, see “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” in the MATLAB documentation.

Examples Let

x = [0.5 0
 0 0.5
 -0.5 -0.5
 -0.2 -0.1
 -0.1 0.1
 0.1 -0.1
 0.1 0.1]

then

[V,C] = voronoin(x)

voronoin

2-642

V =
 Inf Inf
 0.3833 0.3833
 0.7000 -1.6500
 0.2875 0.0000
 -0.0000 0.2875
 -0.0000 -0.0000
 -0.0500 -0.5250
 -0.0500 -0.0500
 -1.7500 0.7500
 -1.4500 0.6500

C =

 [1x4 double]
 [1x5 double]
 [1x4 double]
 [1x4 double]
 [1x4 double]
 [1x5 double]
 [1x4 double]

Use a for loop to see the contents of the cell array C.

for i=1:length(C), disp(C{i}), end

 4 2 1 3
 10 5 2 1 9
 9 1 3 7
 10 8 7 9
 10 5 6 8
 8 6 4 3 7
 6 4 2 5

In particular, the fifth Voronoi cell consists of 4 points: V(10,:), V(5,:),
V(6,:), V(8,:).

See Also convhull, convhulln, delaunay, delaunayn, voronoi

voronoin

2-643

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at http://www.acm.org/
pubs/citations/journals/toms/1996-22-4/p469-barber/ and in PostScript
format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

waitbar

2-644

2waitbarPurpose Display waitbar

Syntax h = waitbar(x,'title')
waitbar(x,'title','CreateCancelBtn','button_callback')
waitbar(...,property_name,property_value,...)
waitbar(x)
waitbar(x,h)
waitbar(x,h,'updated title')

Description A waitbar shows what percentage of a calculation is complete, as the
calculation proceeds.

h = waitbar(x,'title') displays a waitbar of fractional length x. The handle
to the waitbar figure is returned in h. x must be between 0 and 1.

waitbar(x,'title','CreateCancelBtn','button_callback') specifying
CreateCancelBtn adds a cancel button to the figure that executes the
MATLAB commands specified in button_callback when the user clicks the
cancel button or the close figure button. waitbar sets both the cancel button
callback and the figure CloseRequestFcn to the string specified in
button_callback.

waitbar(...,property_name,property_value,...) optional arguments
property_name and property_value enable you to set corresponding waitbar
figure properties.

waitbar(x) subsequent calls to waitbar(x) extend the length of the bar to the
new position x.

waitbar(x,h) extends the length of the bar in the waitbar h to the new position
x.

Example waitbar is typically used inside a for loop that performs a lengthy
computation. For example,

h = waitbar(0,'Please wait...');

for i=1:100, % computation here %
waitbar(i/100)
end

waitbar

2-645

close(h)

waitfor

2-646

2waitforPurpose Wait for condition

Syntax waitfor(h)
waitfor(h,'PropertyName')
waitfor(h,'PropertyName',PropertyValue)

Description The waitfor function blocks the caller’s execution stream so that
command-line expressions, callbacks, and statements in the blocked M-file do
not execute until a specified condition is satisfied.

waitfor(h) returns when the graphics object identified by h is deleted or when
a Ctrl-C is typed in the Command Window. If h does not exist, waitfor returns
immediately without processing any events.

waitfor(h,'PropertyName'), in addition to the conditions in the previous
syntax, returns when the value of 'PropertyName' for the graphics object h
changes. If 'PropertyName' is not a valid property for the object, waitfor
returns immediately without processing any events.

waitfor(h,'PropertyName',PropertyValue), in addition to the conditions in
the previous syntax, waitfor returns when the value of 'PropertyName' for
the graphics object h changes to PropertyValue. waitfor returns immediately
without processing any events if 'PropertyName' is set to PropertyValue.

Remarks While waitfor blocks an execution stream, other execution streams in the form
of callbacks may execute as a result of various events (e.g., pressing a mouse
button).

waitfor can block nested execution streams. For example, a callback invoked
during a waitfor statement can itself invoke waitfor.

See Also uiresume, uiwait

waitforbuttonpress

2-647

2waitforbuttonpressPurpose Wait for key or mouse button press

Syntax k = waitforbuttonpress

Description k = waitforbuttonpress blocks the caller’s execution stream until the
function detects that the user has pressed a mouse button or a key while the
figure window is active. The function returns

• 0 if it detects a mouse button press

• 1 if it detects a key press

Additional information about the event that causes execution to resume is
available through the figure’s CurrentCharacter, SelectionType, and
CurrentPoint properties.

If a WindowButtonDownFcn is defined for the figure, its callback is executed
before waitforbuttonpress returns a value.

Example These statements display text in the Command Window when the user either
clicks a mouse button or types a key in the figure window:

w = waitforbuttonpress;
if w == 0

disp('Button press')
else

disp('Key press')
end

See Also dragrect, figure, gcf, ginput, rbbox, waitfor

warndlg

2-648

2warndlgPurpose Display warning dialog box

Syntax h = warndlg('warningstring','dlgname')

Description warndlg displays a dialog box named 'Warning Dialog' containing the string
'This is the default warning string.' The warning dialog box disappears
after you press the OK button.

warndlg('warningstring') displays a dialog box with the title 'Warning
Dialog' containing the string specified by warningstring.

warndlg('warningstring','dlgname') displays a dialog box with the title
dlgname that contains the string warningstring.

h = warndlg(...) returns the handle of the dialog box.

Examples The statement

warndlg('Pressing OK will clear memory','!! Warning !!')

displays this dialog box:

See Also dialog, errordlg, helpdlg, msgbox

warning

2-649

2warningPurpose Display warning message

Syntax warning('message')
warning on
warning off
warning backtrace
warning debug
warning once
warning always
[s,f] = warning

Description warning('message') displays the text 'message' as does the disp function,
except that with warning, message display can be suppressed.

warning off suppresses all subsequent warning messages.

warning on re-enables them.

warning backtrace is the same as warning on except that the file and line
number that produced the warning are displayed.

warning debug is the same as dbstop if warning and triggers the debugger
when a warning is encountered.

warning once displays Handle Graphics backwards compatibility warnings
only once per session.

warning always displays Handle Graphics backwards compatibility warnings
as they are encountered (subject to current warning state).

[s,f] = warning returns the current warning state s and the current warning
frequency f as strings.

Remarks Use dbstop on warning to trigger the debugger when a warning is
encountered.

See Also dbstop, disp, error, errordlg

waterfall

2-650

2waterfallPurpose Waterfall plot

Syntax waterfall(Z)
waterfall(X,Y,Z)
waterfall(...,C)

h = waterfall(...)

Description The waterfall function draws a mesh similar to the meshz function, but it does
not generate lines from the columns of the matrices. This produces a
“waterfall” effect.

waterfall(Z) creates a waterfall plot using x = 1:size(Z,1) and
y = 1:size(Z,1). Z determines the color, so color is proportional to surface
height.

waterfall(X,Y,Z) creates a waterfall plot using the values specified in X, Y,
and Z. Z also determines the color, so color is proportional to the surface height.
If X and Y are vectors, X corresponds to the columns of Z, and Y corresponds to
the rows, where length(x) = n, length(y) = m, and [m,n] = size(Z). X and
Y are vectors or matrices that define the x and y coordinates of the plot. Z is a
matrix that defines the z coordinates of the plot (i.e., height above a plane). If
C is omitted, color is proportional to Z.

waterfall(...,C) uses scaled color values to obtain colors from the current
colormap. Color scaling is determined by the range of C, which must be the
same size as Z. MATLAB performs a linear transformation on C to obtain colors
from the current colormap.

h = waterfall(...) returns the handle of the patch graphics object used to
draw the plot.

Remarks For column-oriented data analysis, use waterfall(Z') or
waterfall(X',Y',Z').

Examples Produce a waterfall plot of the peaks function.

[X,Y,Z] = peaks(30);

waterfall

2-651

waterfall(X,Y,Z)

Algorithm The range of X, Y, and Z, or the current setting of the axes Llim, YLim, and ZLim
properties, determines the range of the axes (also set by axis). The range of C,
or the current setting of the axes Clim property, determines the color scaling
(also set by caxis).

The CData property for the patch graphics objects specifies the color at every
point along the edge of the patch, which determines the color of the lines.

The waterfall plot looks like a mesh surface; however, it is a patch graphics
object. To create a surface plot similar to waterfall, use the meshz function
and set the MeshStyle property of the surface to 'Row'. For a discussion of
parametric surfaces and related color properties, see surf.

See Also axes, axis, caxis, meshz, ribbon, surf

Properties for patch graphics objects.

−3
−2

−1
0

1
2

3

−4

−2

0

2

4
−10

−5

0

5

10

wavplay

2-652

2wavplayPurpose Play recorded sound on a PC-based audio output device.

Syntax wavplay(y,Fs)
wavplay(...,'mode')

Description wavplay(y,Fs) plays the audio signal stored in the vector y on a PC-based
audio output device. You specify the audio signal sampling rate with the
integer Fs in samples per second. The default value for Fs is 11025 Hz (samples
per second).

wavplay(...,'mode') specifies how wavplay interacts with the command line,
according the string 'mode'. The string 'mode' can be:

• 'async' (default value): You have immediate access to the command line as
soon as the sound begins to play on the audio output device (a nonblocking
device call).

• 'sync': You don’t have access to the command line until the sound has
finished playing (a blocking device call).

The audio signal y can be one of four data types. The number of bits used to
quantize and play back each sample depends on the data type.

Remarks You can play your signal in stereo if y is a two-column matrix.

Examples The MAT-files gong.mat and chirp.mat both contain an audio signal y, and a
sampling frequency Fs. Load and play the gong and the chirp audio signals.
Change the names of these signals in between load commands and play them
sequentially using the 'sync' option for wavplay.

Table 2-1: Data Types for wavplay

Data Type Quantization

Double-precision (default value) 16 bits/sample

Single-precision 16 bits/sample

16-bit signed integer 16 bits/sample

8-bit unsigned integer 8 bits/sample

wavplay

2-653

load chirp;
y1 = y; Fs1 = Fs;
load gong;
wavplay(y1,Fs1,'sync') % The chirp signal finishes before the
wavplay(y,Fs) % gong signal begins playing.

See Also wavrecord

wavread

2-654

2wavreadPurpose Read Microsoft WAVE (.wav) sound file

Graphical
Interface

As an alternative to auread, use the Import Wizard. To activate the Import
Wizard, select Import Data from the File menu.

Syntax y = wavread('filename')
[y,Fs,bits] = wavread('filename')
[...] = wavread('filename',N)
[...] = wavread('filename',[N1 N2])
[...] = wavread('filename','size')

Description wavread supports multichannel data, with up to 16 bits per sample.

y = wavread('filename') loads a WAVE file specified by the string filename,
returning the sampled data in y. The .wav extension is appended if no
extension is given. Amplitude values are in the range [–1,+1].

[y,Fs,bits] = wavread('filename') returns the sample rate (Fs) in Hertz
and the number of bits per sample (bits) used to encode the data in the file.

[...] = wavread('filename',N) returns only the first N samples from each
channel in the file.

[...] = wavread('filename',[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = wavread('filename','size') returns the size of the audio data
contained in the file in place of the actual audio data, returning the vector siz
= [samples channels].

See Also auread, wavwrite

wavrecord

2-655

2wavrecordPurpose Record sound using a PC-based audio input device.

Syntax y = wavrecord(n,Fs)
y = wavrecord(...,ch)
y = wavrecord(...,'dtype')

Description y = wavrecord(n,Fs) records n samples of an audio signal, sampled at a rate
of Fs Hz (samples per second). The default value for Fs is 11025 Hz.

y = wavrecord(...,ch) uses ch number of input channels from the audio
device. The default value for ch is 1.

y = wavrecord(...,'dtype') uses the data type specified by the string
'dtype' to record the sound. The string 'dtype' can be one of the following:

• 'double' (default value), 16 bits/sample
• 'single', 16 bits/sample
• 'int16', 16 bits/sample
• 'uint8', 8 bits/sample

Remarks Standard sampling rates for PC-based audio hardware are 8000, 11025, 2250,
and 44100 samples per second. Stereo signals are returned as two-column
matrices. The first column of a stereo audio matrix corresponds to the left input
channel, while the second column corresponds to the right input channel.

Examples Record 5 seconds of 16-bit audio sampled at 11,025 Hz. Play back the recorded
sound using wavplay. Speak into your audio device (or produce your audio
signal) while the wavrecord command runs.

Fs = 11025;
y = wavrecord(5*Fs,Fs,'int16');
wavplay(y,Fs);

See Also wavplay

wavwrite

2-656

2wavwritePurpose Write Microsoft WAVE (.wav) sound file

Syntax wavwrite(y,'filename')
wavwrite(y,Fs,'filename')
wavwrite(y,Fs,N,'filename')

Description wavwrite supports multi-channel 8- or 16-bit WAVE data.

wavwrite(y,'filename') writes a WAVE file specified by the string filename.
The data should be arranged with one channel per column. Amplitude values
outside the range [–1,+1] are clipped prior to writing.

wavwrite(y,Fs,'filename') specifies the sample rate Fs, in Hertz, of the
data.

wavwrite(y,Fs,N,'filename') forces an N-bit file format to be written, where
N <= 16.

See Also auwrite, wavread

web

2-657

2webPurpose Point Help browser or Web browser to file or Web site

Graphical
Interface

As an alternative to the web function, type the URL in the page title field at the
top of the display pane in the Help browser.

Syntax web url
web url -browser
stat = web('url', '-browser')

Description web url displays the MATLAB Help browser, loads the file or Web site
specified by url (the URL) in it, and returns the status to the Command
Window. Generally, url specifies a local file or a Web site on the Internet.

web url -browser displays the default Web browser for your system, loads the
file or Web site specified by url (the URL) in it, and returns the status to the
Command Window. Generally, url specifies a local file or a Web site on the
Internet. The URL can be in any form that the browser supports. On Windows,
the default Web browser is determined by the operating system. On UNIX, the
Web browser used is specified in docopt, in the doccmd string. If your system
default browser is Netscape, start Netscape before issuing the web function
with the -browser argument to avoid possible problems.

stat = web('url', '-browser') is the function form and returns the status
of web to the variable stat.

Examples web file:/disk/dir1/dir2/foo.html points the Help browser to the file
foo.html. If the file is on the MATLAB path,
web(['file:' which('foo.html')]) also works.

web http://www.mathworks.com loads The MathWorks Web page into the
Help browser.

Value of stat Description

0 Browser was found and launched.

1 Browser was not found.

2 Browser was found but could not be launched.

web

2-658

web www.mathworks.com -browser loads The MathWorks Web page into your
system’s default Web browser, for example, Netscape Navigator.

Use web mailto:email_address to use your default e-mail application to send
a message to email_address.

See Also doc, docopt, helpbrowser

weekday

2-659

2weekdayPurpose Day of the week

Syntax [N,S] = weekday(D)

Description [N,S] = weekday(D) returns the day of the week in numeric (N) and string (S)
form for each element of a serial date number array or date string. The days of
the week are assigned these numbers and abbreviations:

Examples Either

[n,s] = weekday(728647)

or

[n,s] = weekday('19-Dec-1994')

returns n = 2 and s = Mon.

See Also datenum, datevec, eomday

N S N S

1 Sun 5 Thu

2 Mon 6 Fri

3 Tue 7 Sat

4 Wed

what

2-660

2whatPurpose List MATLAB specific files in current directory

Graphical
Interface

As an alternative to the what function, use the Current Directory browser. To
open it, select Current Directory from the View menu in the MATLAB
desktop.

Syntax what
what dirname
s = what('dirname')

Description what lists the M, MAT, MEX, MDL, and P-files and the class directories that reside
in the current working directory.

what dirname lists the files in directory dirname on the MATLAB search path.
It is not necessary to enter the full pathname of the directory. The last
component, or last couple of components, is sufficient.

Use what class to list the files in method directory, @class. For example, what
cfit lists the MATLAB files in toolbox\curvefit\curvefit\@cfit.

s = what('dirname') returns the results in a structure array with these
fields.

what dirname is the unquoted form of the syntax.

Field Description

path Path to directory

m Cell array of M-file names

mat Cell array of MAT-file names

mex Cell array of MEX-file names

mdl Cell array of MDL-file names

p Cell array of P-file names

classes Cell array of class names

what

2-661

Examples To list the files in toolbox\matlab\audio,

what audio

M-files in directory matlabroot\toolbox\matlab\audio

Contents lin2mu sound wavread
auread mu2lin soundsc wavrecord
auwrite saxis wavplay wavwrite

MAT-files in directory matlabroot\toolbox\matlab\audio

chirp handel splat
gong laughter train

To obtain a structure array containing the MATLAB filenames in toolbox\
matlab\general, type

s = what('general')
s =
 path: 'matlabroot:\toolbox\matlab\general'
 m: {105x1 cell}
 mat: {0x1 cell}
 mex: {5x1 cell}
 mdl: {0x1 cell}
 p: {'helpwin.p'}
 classes: {'char'}

See Also dir, exist, lookfor, path, which, who

whatsnew

2-662

2whatsnewPurpose Display README files for MATLAB and toolboxes

Syntax whatsnew
whatsnew matlab
whatsnew toolboxpath

Description whatsnew displays the README file for the MATLAB product or a specified
toolbox. If present, the README file summarizes new functionality that is not
described in the documentation.

whatsnew matlab displays the README file for MATLAB.

whatsnew toolboxpath displays the README file for the toolbox specified by the
string toolboxpath.

Examples To display the README file for MATLAB, type

whatsnew matlab

To display the README file for the Signal Processing Toolbox, type

whatsnew signal

See Also help, lookfor, path, version, which

which

2-663

2whichPurpose Locate functions and files

Graphical
Interface

As an alternative to the which function, use the Current Directory browser. To
open it, select Current Directory from the View menu in the MATLAB
desktop.

Syntax which fun
which classname/fun
which private/fun
which classname/private/fun
which fun1 in fun2
which fun(a,b,c,...)
which file.ext
which fun -all
s = which('fun',...)

Description which fun displays the full pathname for the argument fun. If fun is a

• MATLAB function or Simulink model in an M, P, or MDL file on the
MATLAB path, then which displays the full pathname for the corresponding
file

• Workspace variable or built-in function, then which displays a message
identifying fun as a variable or built-in function

• Method in a loaded Java class, then which displays the package, class, and
method name for that method

If fun is an overloaded function or method, then which fun returns only the
pathname of the first function or method found.

which classname/fun displays the full pathname for the M-file defining the
fun method in MATLAB class, classname. For example, which serial/fopen
displays the path for fopen.m in MATLAB class directory, @serial.

which private/fun limits the search to private functions. For example, which
private/orthog displays the path for orthog.m in the \private subdirectory
of toolbox\matlab\elmat.

which

2-664

which classname/private/fun limits the search to private methods defined
by the MATLAB class, classname. For example, which dfilt/private/todtf
displays the path for todtf.m in the private directory of the dfilt class.

which fun1 in fun2 displays the pathname to function fun1 in the context of
the M-file fun2. You can use this form to determine whether a subfunction or
private version of fun1 is called from fun2, rather than a function on the path.
For example, which get in editpath tells you which get function is called by
editpath.m.

During debugging of fun2, using which fun1 gives the same result.

which fun(a,b,c,...) displays the path to the specified function with the
given input arguments. For example, if d is a database driver object, then
which get(d) displays the path toolbox\database\database\@driver\get.m.

which file.ext displays the full pathname of the specified file if that file is in
the current working directory or on the MATLAB path. Use exist to check for
existence of files anywhere else.

which fun -all displays the paths to all items on the MATLAB path with the
name fun. The first item in the returned list is usually the one that would be
returned by which without using -all. The others in the list either are
shadowed or can be executed in special circumstances. You may use the -all
qualifier with any of the above formats of the which function.

s = which('fun',...) returns the results of which in the string s. For built-in
functions or workspace variables, s will be the string built-in or variable,
respectively. You may specify an output variable in any of the above formats of
the which function.

If -all is used with this form, the output s is always a cell array of strings, even
if only one string is returned.

Examples The first statement below reveals that inv is a built-in function. The second
indicates that pinv is in the matfun directory of the MATLAB Toolbox.

which inv
inv is a built-in function.

which pinv

which

2-665

matlabroot\toolbox\matlab\matfun\pinv.m

To find the fopen function used on MATLAB serial class objects

which serial/fopen
matlabroot\toolbox\matlab\iofun\@serial\fopen.m % serial method

To find the setTitle method used on objects of the Java Frame class, the class
must first be loaded into MATLAB. The class is loaded when you create an
instance of the class.

frameObj = java.awt.Frame;

which setTitle
java.awt.Frame.setTitle % Frame method

The following example uses the form, which fun(a,b,c,...). The response
returned from which depends upon the arguments of the function feval. When
fun is a function handle, MATLAB evaluates the function using the feval
built-in.

fun = @abs;
which feval(fun,-2.5)
feval is a built-in function.

When fun is the inline function, MATLAB evaluates the function using the
feval method of the inline class.

fun = inline('abs(x)');
which feval(fun,-2.5)
matlabroot\toolbox\matlab\funfun\@inline\feval.m % inline
method

When you specify an output variable, which returns a cell array of strings to
the variable. You must use the function form of which, enclosing all arguments
in parentheses and single quotes.

s = which('private/stradd','-all');
whos s
 Name Size Bytes Class
 s 3x1 562 cell array
Grand total is 146 elements using 562 bytes

which

2-666

See Also dir, doc, exist, lookfor, path, type, what, who

while

2-667

2whilePurpose Repeat statements an indefinite number of times

Syntax while expression
statements

end

Description while repeats statements an indefinite number of times. The statements are
executed while the real part of expression has all nonzero elements.
expression is usually of the form

expression rel_op expression

where rel_op is ==, <, >, <=, >=, or ~=.

The scope of a while statement is always terminated with a matching end.

Arguments expression
expression is a MATLAB expression, usually consisting of variables or
smaller expressions joined by relational operators (e.g., count < limit), or
logical functions (e.g., isreal(A)).

Simple expressions can be combined by logical operators (&,|,~) into compound
expressions such as the following. MATLAB evaluates compound expressions
from left to right, adhering to operator precedence rules.

(count < limit) & ((height - offset) >= 0)

statements
statements is one or more MATLAB statements to be executed only while the
expression is true or nonzero.

Remarks Nonscalar Expressions
If the evaluated expression yields a nonscalar value, then every element of
this value must be true or nonzero for the entire expression to be considered
true. For example, the statement, while (A < B) is true only if each element
of matrix A is less than its corresponding element in matrix B. See Example 2,
below.

while

2-668

Partial Evaluation of the Expression Argument
Within the context of an if or while expression, MATLAB does not necessarily
evaluate all parts of a logical expression. In some cases it is possible, and often
advantageous, to determine whether an expression is true or false through
only partial evaluation.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no need to
evaluate B and MATLAB does not do so. In statement 2, if A is nonzero, then
the expression is true, regardless of B. Again, MATLAB does not evaluate the
latter part of the expression.

1) while (A & B) 2) while (A | B)

You can use this property to your advantage to cause MATLAB to evaluate a
part of an expression only if a preceding part evaluates to the desired state.
Here are some examples.

while (b ~= 0) & (a/b > 18.5)

if exist('myfun.m') & (myfun(x) >= y)

if iscell(A) & all(cellfun('isreal', A))

Examples Example 1 - Simple while Statement
The variable eps is a tolerance used to determine such things as near
singularity and rank. Its initial value is the machine epsilon, the distance from
1.0 to the next largest floating-point number on your machine. Its calculation
demonstrates while loops.

eps = 1;
while (1+eps) > 1

eps = eps/2;
end
eps = eps*2

while

2-669

Example 2 - Nonscalar Expression
Given matrices A and B

A = B =
 1 0 1 1
 2 3 3 4

See Also if, for, end, all, any, break, return, switch

Expression Evaluates As Because

A < B false A(1,1) is not less than B(1,1).

A < (B + 1) true Every element of A is less than that same
element of B with 1 added.

A & B false A(1,2) & B(1,2) is false.

B < 5 true Every element of B is less than 5.

whitebg

2-670

2whitebgPurpose Change axes background color

Syntax whitebg
whitebg(h)
whitebg(ColorSpec)
whitebg(h,ColorSpec)

Description whitebg complements the colors in the current figure.

whitebg(h) complements colors in all figures specified in the vector h.

whitebg(ColorSpec) and whitebg(h,ColorSpec) change the color of the axes,
which are children of the figure, to the color specified by ColorSpec.

Remarks whitebg changes the colors of the figure’s children, with the exception of
shaded surfaces. This ensures that all objects are visible against the new
background color. whitebg sets the default properties on the root such that all
subsequent figures use the new background color.

Examples Set the background color to blue-gray.

whitebg([0 .5 .6])

Set the background color to blue.

whitebg('blue')

See Also ColorSpec

The figure graphics object property InvertHardCopy.

who, whos

2-671

2who, whosPurpose List variables in the workspace

Graphical
Interface

As an alternative to whos, use the Workspace browser. To open it, select
Workspace from the View menu in the MATLAB desktop.

Syntax who
whos
who('global')
whos('global')
who('-file','filename')
whos('-file','filename')
who('var1','var2',...)
who('-file','filename','var1','var2',...)
s = who(...)
s = whos(...)
who -file filename var1 var2 ...
whos -file filename var1 var2 ...

Description who lists the variables currently in the workspace.

whos lists the current variables and their sizes and types. It also reports the
totals for sizes.

who('global') and whos('global') list the variables in the global workspace.

who('-file','filename') and whos('-file','filename') list the variables
in the specified MAT-file filename. Use the full path for filename.

who('var1','var2',...) and whos('var1','var2',...) restrict the display
to the variables specified. The wildcard character * can be used to display
variables that match a pattern. For example, who('A*') finds all variables in
the current workspace that start with A.

who('-file','filename','var1','var2',...) and
whos('-file','filename','var1','var2',...) list the specified variables
in the MAT-file filename. The wildcard character * can be used to display
variables that match a pattern.

who, whos

2-672

s = who(...) returns a cell array containing the names of the variables in
the workspace or file and assigns it to the variable s.

s = whos(...) returns a structure with these fields

name variable name
size variable size
bytes number of bytes allocated for the array
class class of variable

and assigns it to the variable s.

who -file filename var1 var2 ... and whos -file filename var1 var2
... are the unquoted forms of the syntax.

See Also assignin, dir, evalin, exist, what, workspace

wilkinson

2-673

2wilkinsonPurpose Wilkinson’s eigenvalue test matrix

Syntax W = wilkinson(n)

Description W = wilkinson(n) returns one of J. H. Wilkinson’s eigenvalue test matrices. It
is a symmetric, tridiagonal matrix with pairs of nearly, but not exactly, equal
eigenvalues.

Examples wilkinson(7)

ans =

3 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 3

The most frequently used case is wilkinson(21). Its two largest eigenvalues
are both about 10.746; they agree to 14, but not to 15, decimal places.

See Also eig, gallery, pascal

wk1read

2-674

2wk1readPurpose Read Lotus123 spreadsheet file (.wk1)

Syntax M = wk1read(filename)
M = wk1read(filename,r,c)
M = wk1read(filename,r,c,range)

Description M = wk1read(filename) reads a Lotus123 WK1 spreadsheet file into the
matrix M.

M = wk1read(filename,r,c) starts reading at the row-column cell offset
specified by (r,c). r and c are zero based so that r=0, c=0 specifies the first
value in the file.

M = wk1read(filename,r,c,range) reads the range of values specified by the
parameter range, where range can be:

• A four-element vector specifying the cell range in the format

[upper_left_row upper_left_col lower_right_row lower_right_col]

• A cell range specified as a string; for example, 'A1...C5'.

• A named range specified as a string; for example, 'Sales'.

See Also wk1write

MATLAB Matrix

Spreadsheet

column

row

wk1write

2-675

2wk1writePurpose Write a matrix to a Lotus123 WK1 spreadsheet file

Syntax wk1write(filename,M)
wk1write(filename,M,r,c)

Description wk1write(filename,M) writes the matrix M into a Lotus123 WK1 spreadsheet
file named filename.

wk1write(filename,M,r,c) writes the matrix starting at the spreadsheet
location (r,c). r and c are zero based so that r=0, c=0 specifies the first cell in
the spreadsheet.

See Also wk1read

MATLAB Matrix

Spreadsheet

column

row

workspace

2-676

2workspacePurpose Display the Workspace browser, a tool for managing the workspace

Graphical
Interface

As an alternative to the workspace function, select Workspace from the View
menu in the MATLAB desktop.

Syntax workspace

Description workspace displays the Workspace browser, a graphical user interface that
allows you to view and manage the contents of the MATLAB workspace. It
provides a graphical representation of the whos display, and allows you to
perform the equivalent of the clear, load, open, and save functions.

To see and edit a graphical representation of a variable, double-click the
variable in the Workspace browser. The variable is displayed in the Array
Editor, where you can edit it. You can only use this feature with numeric
arrays.

See Also who

xlabel, ylabel, zlabel

2-677

2xlabel, ylabel, zlabelPurpose Label the x-, y-, and z-axis

Syntax xlabel('string')
xlabel(fname)
xlabel(...,'PropertyName',PropertyValue,...)
h = xlabel(...)

ylabel(...)
h = ylabel(...)

zlabel(...)
h = zlabel(...)

Description Each axes graphics object can have one label for the x-, y-, and z-axis. The label
appears beneath its respective axis in a two-dimensional plot and to the side or
beneath the axis in a three-dimensional plot.

xlabel('string') labels the x-axis of the current axes.

xlabel(fname) evaluates the function fname, which must return a string, then
displays the string beside the x-axis.

xlabel(...,'PropertName',PropertyValue,...) specifies property name
and property value pairs for the text graphics object created by xlabel.

h = xlabel(...), h = ylabel(...), and h = zlabel(...) return the handle
to the text object used as the label.

ylabel(...) and zlabel(...) label the y-axis and z-axis, respectively, of the
current axes.

Remarks Re-issuing an xlabel, ylabel, or zlabel command causes the new label to
replace the old label.

For three-dimensional graphics, MATLAB puts the label in the front or side,
so that it is never hidden by the plot.

See Also text, title

xlim, ylim, zlim

2-678

2xlim, ylim, zlimPurpose Set or query axis limits

Syntax Note that the syntax for each of these three functions is the same; only the xlim
function is used for simplicity. Each operates on the respective x-, y-, or z-axis.

xlim
xlim([xmin xmax])
xlim('mode')
xlim('auto')
xlim('manual')
xlim(axes_handle,...)

Description xlim with no arguments returns the respective limits of the current axes.

xlim([xmin xmax]) sets the axis limits in the current axes to the specified
values.

xlim('mode') returns the current value of the axis limits mode, which can be
either auto (the default) or manual.

xlim('auto') sets the axis limit mode to auto.

xlim('manual') sets the respective axis limit mode to manual.

xlim(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
these functions operate on the current axes.

Remarks xlim, ylim, and zlim set or query values of the axes object XLim, YLim, ZLim,
and XLimMode, YLimMode, ZLimMode properties.

When the axis limit modes are auto (the default), MATLAB uses limits that
span the range of the data being displayed and are round numbers. Setting a
value for any of the limits also sets the corresponding mode to manual. Note
that high-level plotting functions like plot and surf reset both the modes and
the limits. If you set the limits on an existing graph and want to maintain these
limits while adding more graphs, use the hold command.

xlim, ylim, zlim

2-679

Examples This example illustrates how to set the x- and y-axis limits to match the actual
range of the data, rather than the rounded values of [-2 3] for the x-axis and
[-2 4] for the y-axis originally selected by MATLAB.

[x,y] = meshgrid([−1.75:.2:3.25]);
z = x.*exp(−x.^2−y.^2);
surf(x,y,z)
xlim([−1.75 3.25])
ylim([−1.75 3.25])

See Also axis

The axes properties XLim, YLim, ZLim

The “Aspect Ratio” section in the online Using MATLAB Graphics manual.

−1
0

1
2

3

−1

0

1

2

3

−0.5

0

0.5

xlsfinfo

2-680

2xlsfinfoPurpose Determine if file contains Microsoft Excel (.xls) spreadsheet

Syntax [A, Descr] = xlsfinfo('filename')

Description [A, Descr] = xlsfinfo('filename') returns the character array 'Microsoft
Excel Spreadsheet' in A if filename is an Excel spreadsheet. Returns an
empty string if filename is not an Excel spreadsheet. Descr is a cell array of
strings containing the name of each spreadsheet in the file.

Examples When filename is an Excel spreadsheet:

[a,descr] = xlsfinfo('tempdata.xls')

a =

Microsoft Excel Spreadsheet

descr =

 'Sheet1'

See Also xlsread

xlsread

2-681

2xlsreadPurpose Read Microsoft Excel spreadsheet file (.xls)

Syntax A = xlsread('filename')
[A, B] = xlsread('filename')
[...] = xlsread('filename','sheetname')

Description A = xlsread('filename') returns numeric data in array A from the first sheet
in Microsoft Excel spreadsheet file named filename. xlsread ignores leading
rows or columns of text. However, if a cell not in a leading row or column is
empty or contains text, xlsread puts a NaN in its place in A.

[A, B]= xlsread('filename') returns numeric data in array A, text data in
cell array B. If the spreadsheet contains leading rows or columns of text,
xlsread returns only those cells in B. If the spreadsheet contains text that is
not in a row or column header, xlsread returns a cell array the same size as
the original spreadsheet with text strings in the cells that correspond to text in
the original spreadsheet. All cells that correspond to numeric data are empty.

[...]= xlsread('filename','sheetname') read sheet specified in
sheetname. Returns an error if sheetname does not exist. To determine the
names of the sheets in a spreadsheet file, use xlsfinfo.

Handling Excel Date Values
When reading date fields from Excel files, you must convert the Excel date
values into MATLAB date values. Both Microsoft Excel and MATLAB
represent dates as serial days elapsed from some reference date. However,
Microsoft Excel uses January 1, 1900 as the reference date and MATLAB uses
January 1, 0000.

For example, if your Excel file contains these date values,

4/12/00
4/13/00
4/14/00

use this code to convert the dates to MATLAB dates.

excelDates = xlsread('filename')
matlabDates = datenum('30-Dec-1899') + excelDates
datestr(matlabDates,2)
ans =

xlsread

2-682

04/12/00
04/13/00
04/14/00

Examples Example 1 – Reading Numeric Data
The Microsoft Excel spreadsheet file, testdata1.xls, contains this data:

1 6
2 7
3 8
4 9
5 10

To read this data into MATLAB, use this command:

A = xlsread('testdata1.xls')
A =

1 6
2 7
3 8
4 9
5 10

Example 2 – Handling Text Data
The Microsoft Excel spreadsheet file, testdata2.xls, contains a mix of
numeric and text data.

1 6
2 7
3 8
4 9
5 text

xlsread

2-683

xlsread puts a NaN in place of the text data in the result.

A = xlsread('testdata2.xls')
A =

1 6
2 7
3 8
4 9
5 NaN

Example 3 – Handling Files with Row or Column Headers
The Microsoft Excel spreadsheet file, tempdata.xls, contains two columns of
numeric data with text headers for each column:

Time Temp
12 98
13 99
14 97

If you want to import only the numeric data, use xlsread with a single return
argument. xlsread ignores a leading row or column of text in the numeric
result.

ndata = xlsread('tempdata.xls')

ndata =

 12 98
 13 99
 14 97

xlsread

2-684

To import both the numeric data and the text data, specify two return values
for xlsread.

[ndata, headertext] = xlsread('tempdata.xls')
ndata =

 12 98
 13 99
 14 97

headertext =

 'time' 'temp'

See Also wk1read, textread, xlsfinfo

xor

2-685

2xorPurpose Exclusive or

Syntax C = xor(A,B)

Description C = xor(A,B) performs an exclusive OR operation on the corresponding
elements of arrays A and B. The resulting element C(i,j,...) is logical true (1)
if A(i,j,...) or B(i,j,...), but not both, is nonzero.

Examples Given A = [0 0 pi eps] and B = [0 -2.4 0 1], then

C = xor(A,B)
C =
 0 1 1 0

To see where either A or B has a nonzero element and the other matrix does not,

spy(xor(A,B))

See Also all, any, find, logical operators

A B C

zero zero 0

zero nonzero 1

nonzero zero 1

nonzero nonzero 0

zeros

2-686

2zerosPurpose Create an array of all zeros

Syntax B = zeros(n)
B = zeros(m,n)
B = zeros([m n])
B = zeros(d1,d2,d3...)
B = zeros([d1 d2 d3...])
B = zeros(size(A))

Description B = zeros(n) returns an n-by-n matrix of zeros. An error message appears if n
is not a scalar.

B = zeros(m,n) or B = zeros([m n]) returns an m-by-n matrix of zeros.

B = zeros(d1,d2,d3...) or B = zeros([d1 d2 d3...]) returns an array of
zeros with dimensions d1-by-d2-by-d3-by-... .

B = zeros(size(A)) returns an array the same size as A consisting of all
zeros.

Remarks The MATLAB language does not have a dimension statement; MATLAB
automatically allocates storage for matrices. Nevertheless, for large matrices,
MATLAB programs may execute faster if the zeros function is used to set aside
storage for a matrix whose elements are to be generated one at a time, or a row
or column at a time. For example

x = zeros(1,n);
for i = 1:n, x(i) = i; end

See Also eye, ones, rand, randn

zoom

2-687

2zoomPurpose Zoom in and out on a 2-D plot

Syntax zoom on
zoom off
zoom out
zoom reset
zoom
zoom xon
zoom yon
zoom(factor)
zoom(fig, option)

Description zoom on turns on interactive zooming. When interactive zooming is enabled in
a figure, pressing a mouse button while your cursor is within an axes zooms
into the point or out from the point beneath the mouse. Zooming changes the
axes limits.

• For a single-button mouse, zoom in by pressing the mouse button and zoom
out by simultaneously pressing Shift and the mouse button.

• For a two- or three-button mouse, zoom in by pressing the left mouse button
and zoom out by pressing the right mouse button.

Clicking and dragging over an axes when interactive zooming is enabled draws
a rubber-band box. When the mouse button is released, the axes zoom in to the
region enclosed by the rubber-band box.

Double-clicking over an axes returns the axes to its initial zoom setting.

zoom off turns interactive zooming off.

zoom out returns the plot to its initial zoom setting.

zoom reset remembers the current zoom setting as the initial zoom setting.
Later calls to zoom out, or double-clicks when interactive zoom mode is
enabled, will return to this zoom level.

zoom toggles the interactive zoom status.

zoom xon and zoom yon set zoom on for the x- and y-axis, respectively.

zoom

2-688

zoom(factor) zooms in or out by the specified zoom factor, without affecting
the interactive zoom mode. Values greater than 1 zoom in by that amount,
while numbers greater than 0 and less than 1 zoom out by 1/factor.

zoom(fig, option) Any of the above options can be specified on a figure other
than the current figure using this syntax.

Remarks zoom changes the axes limits by a factor of two (in or out) each time you press
the mouse button while the cursor is within an axes. You can also click and
drag the mouse to define a zoom area, or double-click to return to the initial
zoom level.

I-1

Index

Numerics
1-norm 2-190

A
Accelerator

Uimenu property 2-595
ActiveX

object methods
propedit 2-149
release 2-221
save 2-265
send 2-284
set 2-291

allocation of storage (automatic) 2-686
AlphaData

surface property 2-461
AlphaDataMapping

patch property 2-30
surface property 2-461

AmbientStrength

Patch property 2-30
Surface property 2-462

annotating plots 2-99
arguments, M-file

passing variable numbers of 2-620
array

product of elements 2-142
of random numbers 2-179, 2-181
removing first n singleton dimensions of 2-303
removing singleton dimensions of 2-366
reshaping 2-225
shifting dimensions of 2-303
size of 2-312
sorting elements of 2-321
structure 2-236, 2-296
sum of elements 2-444

swapping dimensions of 2-81
of all zeros 2-686

arrays
editing 2-676

ASCII data
converting sparse matrix after loading from
2-330
saving to disk 2-262

aspect ratio of axes 2-52
axes

setting and querying limits 2-678
setting and querying plot box aspect ratio 2-52

axes

editing 2-99
azimuth (spherical coordinates) 2-338
azimuth of viewpoint 2-629

B
BackFaceLighting

Surface property 2-462
BackFaceLightingpatch property 2-31
BackGroundColor

Uicontrol property 2-570
badly conditioned 2-190
binary data

saving to disk 2-262
bold font

TeX characters 2-526
Buckminster Fuller 2-496
BusyAction

patch property 2-31
rectangle property 2-205
Root property 2-241
Surface property 2-462
Text property 2-517

Index

I-2

Uicontextmenu property 2-557
Uicontrol property 2-570
Uimenu property 2-596

ButtonDownFcn

patch property 2-31
rectangle property 2-205
Root property 2-241
Surface property 2-463
Text property 2-517
Uicontextmenu property 2-557
Uicontrol property 2-571
Uimenu property 2-596

C
caching

MATLAB directory 2-48
CallBack

Uicontextmenu property 2-557
Uicontrol property 2-571
Uimenu property 2-596

CallbackObject, Root property 2-241
CaptureMatrix, Root property 2-241
CaptureRect, Root property 2-241
Cartesian coordinates 2-106, 2-338
case

in switch statement (defined) 2-485
lower to upper 2-616

Cayley-Hamilton theorem 2-122
CData

Surface property 2-463
Uicontrol property 2-572

CDataMapping

patch property 2-33
Surface property 2-463

CDatapatch property 2-31
characters

conversion, in format specification string 2-355
escape, in format specification string 2-356

check boxes 2-562
Checked, Uimenu property 2-597
checkerboard pattern (example) 2-223
child functions 2-143
Children

patch property 2-34
rectangle property 2-205
Root property 2-241
Surface property 2-464
Text property 2-517
Uicontextmenu property 2-557
Uicontrol property 2-572
Uimenu property 2-597

Cholesky factorization
lower triangular factor 2-17
minimum degree ordering and (sparse) 2-494

Clipping

rectangle property 2-206
Root property 2-241
Surface property 2-464
Text property 2-518
Uicontextmenu property 2-558
Uicontrol property 2-572
Uimenu property 2-597

Clippingpatch property 2-34
closest triangle search 2-552
closing

MATLAB 2-171
Color

Text property 2-518
colormaps

converting from RGB to HSV 2-231
plotting RGB components 2-232

commercial MATLAB
emulating the Runtime Server 2-261

Index

I-3

complex
numbers, sorting 2-321, 2-323
unitary matrix 2-155

complex Schur form 2-276
condition number of matrix 2-190
context menu 2-554
continued fraction expansion 2-185
conversion

cylindrical to Cartesian 2-106
full to sparse 2-327
lowercase to uppercase 2-616
partial fraction expansion to pole-residue
2-227
polar to Cartesian 2-106
pole-residue to partial fraction expansion
2-227
real to complex Schur form 2-258
spherical to Cartesian 2-338
string to numeric array 2-383

conversion characters in format specification
string 2-355

coordinate system and viewpoint 2-629
coordinates

Cartesian 2-106, 2-338
cylindrical 2-106
polar 2-106
spherical 2-338

CreateFcn

patch property 2-34
rectangle property 2-206
Root property 2-241
Surface property 2-464
Text property 2-518
Uicontextmenu property 2-558
Uicontrol property 2-572
Uimenu property 2-597

cubic interpolation 2-61

current directory 2-150
CurrentFigure, Root property 2-241
Curvature, rectangle property 2-206
curve fitting (polynomial) 2-115
Cuthill-McKee ordering, reverse 2-494, 2-496
cylindrical coordinates 2-106

D
data

ASCII, saving to disk 2-262
binary, dependence upon array size and type
2-264
binary, saving to disk 2-262
computing 2-D stream lines 2-389
computing 3-D stream lines 2-391
formatting 2-354
reading from files 2-529
reducing number of elements in 2-217
smoothing 3-D 2-320
writing to strings 2-354

data, ASCII
converting sparse matrix after loading from
2-330

debugging
M-files 2-143

decomposition
“economy-size” 2-155, 2-480
orthogonal-triangular (QR) 2-155
Schur 2-276
singular value 2-184, 2-480

definite integral 2-164
DeleteFcn

Root property 2-242
Surface property 2-464
Text property 2-518
Uicontextmenu property 2-558

Index

I-4

Uicontrol property 2-572
Uimenu property 2-597

DeleteFcn, rectangle property 2-206
DeleteFcnpatch property 2-34
dependence, linear 2-439
dependent functions 2-143
derivative

polynomial 2-112
detecting

positive, negative, and zero array elements
2-308

diagonal
k-th (illustration) 2-544
sparse 2-332

dialog box
print 2-140
question 2-169
warning 2-648

Diary, Root property 2-242
DiaryFile, Root property 2-242
differences

between sets 2-295
differential equation solvers

ODE boundary value problems
extracting properties of 2-542, 2-543

parabolic-elliptic PDE problems 2-67
DiffuseStrength

Surface property 2-464
DiffuseStrengthpatch property 2-35
dimension statement (lack of in MATLAB) 2-686
dimensions

size of 2-312
direct term of a partial fraction expansion 2-227
directories

listing MATLAB files in 2-660
MATLAB

caching 2-48

removing from search path 2-237
directory

temporary system 2-501
directory, current 2-150
discontinuities, eliminating (in arrays of phase an-

gles) 2-615
division

remainder after 2-222

E
Echo, Root property 2-242
EdgeAlpha

patch property 2-35
surface property 2-465

EdgeColor

patch property 2-35
Surface property 2-465

EdgeColor, rectangle property 2-207
EdgeLighting

patch property 2-36
Surface property 2-466

editable text 2-562
eigenvalue

modern approach to computation of 2-110
problem 2-113
problem, generalized 2-113
problem, polynomial 2-113
Wilkinson test matrix and 2-673

eigenvector
matrix, generalized 2-177

elevation (spherical coordinates) 2-338
elevation of viewpoint 2-629
Enable

Uicontrol property 2-573
Uimenu property 2-598

EraseMode

Index

I-5

rectangle property 2-207
Surface property 2-466
Text property 2-519

EraseModepatch property 2-36
error messages

Out of memory 2-11
ErrorMessage, Root property 2-242
ErrorType, Root property 2-243
escape characters in format specification string

2-356
examples

reducing number of patch faces 2-214
reducing volume data 2-217
subsampling volume data 2-442

Excel spreadsheets
loading 2-681

executing statements repeatedly 2-667
execution

improving speed of by setting aside storage
2-686
pausing M-file 2-51
time for M-files 2-143

extension, filename
.mat 2-262

Extent

Text property 2-520
Uicontrol property 2-573

F
FaceAlphapatch property 2-37
FaceAlphasurface property 2-467
FaceColor

Surface property 2-467
FaceColor, rectangle property 2-208
FaceColorpatch property 2-38
FaceLighting

Surface property 2-468
FaceLightingpatch property 2-38
faces, reducing number in patches 2-213
Faces,patch property 2-38
FaceVertexAlphaData, patch property 2-39
FaceVertexCData,patch property 2-40
factorization

QZ 2-113, 2-177
See also decomposition

factorization, Cholesky
minimum degree ordering and (sparse) 2-494

features
undocumented 2-662

Figure
redrawing 2-219

figures
annotating 2-99
saving 2-268

filename
temporary 2-502

filename extension
.mat 2-262

files
contents, listing 2-553
Excel spreadsheets

loading 2-681
fig 2-268
figure, saving 2-268
listing

in directory 2-660
listing contents of 2-553
locating 2-663
mdl 2-268
model, saving 2-268
opening

in Web browser 2-657
pathname for 2-663

Index

I-6

reading
data from 2-529

README 2-662
sound

reading 2-654
writing 2-656

.wav

reading 2-654
writing 2-656

WK1
loading 2-674
writing to 2-675

finding
sign of array elements 2-308

finish.m 2-171
fixed-width font

text 2-520
uicontrols 2-574

FixedWidthFontName, Root property 2-242
floating-point arithmetic, IEEE

smallest postive number 2-195
flow control

return 2-230
switch 2-485
while 2-667

font
fixed-width, text 2-520
fixed-width, uicontrols 2-574

FontAngle

Text property 2-520
Uicontrol property 2-574

FontName

Text property 2-520
Uicontrol property 2-574

fonts
bold 2-521
italic 2-520

specifying size 2-521
TeX characters

bold 2-526
italics 2-526
specifying family 2-526
specifying size 2-526

units 2-521
FontSize

Text property 2-521
Uicontrol property 2-575

FontUnits

Text property 2-521
Uicontrol property 2-575

FontWeight

Text property 2-521
Uicontrol property 2-575

ForegroundColor

Uicontrol property 2-575
Uimenu property 2-598

Format 2-243
format

specification string, matching file data to 2-368
FormatSpacing, Root property 2-243
formatting data 2-354
fraction, continued 2-185
fragmented memory 2-11
frames 2-563
functions

locating 2-663
pathname for 2-663
that work down the first non-singleton dimen-
sion 2-303

G
Gaussian elimination

Index

I-7

Gauss Jordan elimination with partial pivoting
2-256

generalized eigenvalue problem 2-113
geodesic dome 2-496
Givens rotations 2-159, 2-160
graphics objects

Patch 2-18
resetting properties 2-224
Root 2-238
setting properties 2-288
Surface 2-453
Text 2-510
uicontextmenu 2-554
Uicontrol 2-562
Uimenu 2-591

graphs
editing 2-99

Greek letters and mathematical symbols 2-525
GUIs, printing 2-135

H
Hadamard matrix

subspaces of 2-439
HandleVisibility

patch property 2-41
rectangle property 2-208
Root property 2-243
Surface property 2-468
Text property 2-521
Uicontextmenu property 2-558
Uicontrol property 2-575
Uimenu property 2-598

help
Plot Editor 2-100

HitTest

Patch property 2-42

rectangle property 2-209
Root property 2-243
Surface property 2-469
Text property 2-522
Uicontextmenu property 2-559
Uicontrol property 2-576
Uimenu property 2-599

HorizontalAlignment

Text property 2-523
Uicontrol property 2-576

hyperbolic
secant 2-279
sine 2-309
tangent 2-499

hyperplanes, angle between 2-439

I
identity matrix

sparse 2-335
IEEE floating-point arithmetic

smallest positive number 2-195
indices, array

of sorted elements 2-321
integration

polynomial 2-118
quadrature 2-164

interpolated shading and printing 2-136
Interpreter, Text property 2-523
Interruptible

patch property 2-42
rectangle property 2-209
Root property 2-243
Surface property 2-469
Text property 2-523
Uicontextmenu property 2-559
Uicontrol property 2-577

Index

I-8

Uimenu property 2-599
involutary matrix 2-17
italics font

TeX characters 2-526

J
Jacobi rotations 2-352
Java version used by MATLAB 2-625

K
keyboard mode

terminating 2-230

L
Label, Uimenu property 2-600
labeling

axes 2-677
LaTeX, see TeX 2-524
least squares

polynomial curve fitting 2-115
problem, overdetermined 2-88

limits of axes, setting and querying 2-678
Line

properties 2-205
line

editing 2-99
linear dependence (of data) 2-439
linear equation systems

solving overdetermined 2-157-2-158
linear regression 2-115
lines

computing 2-D stream 2-389
computing 3-D stream 2-391
drawing stream lines 2-393

LineStyle

patch property 2-43
rectangle property 2-209
Surface object 2-470

LineWidth

Patch property 2-43
rectangle property 2-210
Surface property 2-470

list boxes 2-563
defining items 2-581

ListboxTop, Uicontrol property 2-577
logical operations

XOR 2-685
Lotus WK1 files

loading 2-674
writing 2-675

lower triangular matrix 2-544
lowercase to uppercase 2-616

M
machine epsilon 2-668
Marker

Patch property 2-43
Surface property 2-470

MarkerEdgeColor

Patch property 2-44
Surface property 2-471

MarkerFaceColor

Patch property 2-44
Surface property 2-471

MarkerSize

Patch property 2-44
Surface property 2-471

MAT-file 2-262
converting sparse matrix after loading from
2-330

Index

I-9

MAT-files
listing for directory 2-660

MATLAB
quitting 2-171
version number, displaying 2-623

MATLAB startup file 2-372
matlab.mat 2-262
matrices

preallocation 2-686
matrix

complex unitary 2-155
condition number of 2-190
converting to from string 2-367
decomposition 2-155
Hadamard 2-439
Hermitian Toeplitz 2-538
involutary 2-17
lower triangular 2-544
magic squares 2-444
orthonormal 2-155
Pascal 2-17, 2-121
permutation 2-155
pseudoinverse 2-88
reduced row echelon form of 2-256
replicating 2-223
rotating 90˚ 2-251
Schur form of 2-258, 2-276
sorting rows of 2-323
sparse See sparse matrix
square root of 2-363
subspaces of 2-439
Toeplitz 2-538
trace of 2-539
unitary 2-480
upper triangular 2-549
Vandermonde 2-117
Wilkinson 2-333, 2-673

writing to spreadsheet 2-675
Max, Uicontrol property 2-578
memory

minimizing use of 2-11
variables in 2-671

mesh plot
tetrahedron 2-505

MeshStyle, Surface property 2-472
message

error See error message
warning See warning message

methods
locating 2-663

MEX-files
listing for directory 2-660

M-file
pausing execution of 2-51

M-files
creating

in MATLAB directory 2-48
debugging with profile 2-143
listing names of in a directory 2-660
optimizing 2-143

Microsoft Excel files
loading 2-681

Min, Uicontrol property 2-578
minimum degree ordering 2-494
models

saving 2-268
Moore-Penrose pseudoinverse 2-88
multidimensional arrays

rearranging dimensions of 2-81
removing singleton dimensions of 2-366
reshaping 2-225
size of 2-312
sorting elements of 2-321

Index

I-10

N
NaN (Not-a-Number)

returned by rem 2-222
nonzero entries

specifying maximum number of in sparse ma-
trix 2-327

nonzero entries (in sparse matrix)
replacing with ones 2-346

norm
1-norm 2-190
pseudoinverse and 2-88-2-90

NormalMode

Patch property 2-44
Surface property 2-472

numbers
prime 2-125
random 2-179, 2-181
real 2-193
smallest positive 2-195

O
optimizing M-file execution 2-143
ordering

minimum degree 2-494
reverse Cuthill-McKee 2-494, 2-496

orthogonal-triangular decomposition 2-155
orthonormal matrix 2-155
Out of memory (error message) 2-11
overdetermined equation systems, solving

2-157-2-158

P
pack 2-11
pagedlg 2-13
pagesetupdlg 2-14

Parent

Patch property 2-45
rectangle property 2-210
Root property 2-244
Surface property 2-472
Text property 2-524
Uicontextmenu property 2-560
Uicontrol property 2-579
Uimenu property 2-600

pareto 2-15
partial fraction expansion 2-227
partialpath 2-16
pascal 2-17
Pascal matrix 2-17, 2-121
Patch

converting a surface to 2-451
creating 2-18
defining default properties 2-24
properties 2-30
reducing number of faces 2-213
reducing size of face 2-304

patch 2-18
path

current 2-48
removing directories from 2-237
viewing 2-50

path 2-48
pathname

partial 2-16
pathnames

of functions or files 2-663
relative 2-16

pathtool 2-50
pause 2-51
pausing M-file execution 2-51
pbaspect 2-52
pcg 2-57

Index

I-11

pcg 2-57
pchip 2-61
pcode 2-63
pcolor 2-64
PDE See Partial Differential Equations
pdepe 2-67
pdeval 2-78
perms 2-80
permutation

of array dimensions 2-81
matrix 2-155
random 2-183

permutations of n elements 2-80
permute 2-81
persistent 2-82
persistent variable 2-82
phase, complex

correcting angles 2-615
pi 2-83
pie 2-84
pie3 2-86
pinv 2-88
planerot 2-91
plot 2-92

editing 2-99
plot box aspect ratio of axes 2-52
Plot Editor

help for 2-100
interface 2-100, 2-101

plot, volumetric
slice plot 2-315

plot3 2-97
plotedit 2-99
plotmatrix 2-102
plotting

2-D plot 2-92
3-D plot 2-97

plot with two y-axes 2-104
ribbon plot 2-233
rose plot 2-248
scatter plot 2-102, 2-272
scatter plot, 3-D 2-274
semilogarithmic plot 2-282
stairstep plot 2-370
stem plot 2-375
stem plot, 3-D 2-377
surface plot 2-447
volumetric slice plot 2-315

plotting See visualizing
plotyy 2-104
PointerLocation, Root property 2-244
PointerWindow, Root property 2-244
pol2cart 2-106
polar 2-107, 2-107
polar coordinates 2-106
poles of transfer function 2-227
poly 2-109
polyarea 2-111
polyder 2-112
polyeig 2-113
polyfit 2-115
polygon

area of 2-111
creating with patch 2-18

polyint 2-118
polynomial

analytic integration 2-118
characteristic 2-109-2-110, 2-247
coefficients (transfer function) 2-227
curve fitting with 2-115
derivative of 2-112
eigenvalue problem 2-113
evaluation 2-119
evaluation (matrix sense) 2-121

Index

I-12

polyval 2-119
polyvalm 2-121
pop-up menus 2-563

defining choices 2-581
Position

Text property 2-524
Uicontextmenu property 2-560
Uicontrol property 2-579
Uimenu property 2-600

Position, rectangle property 2-210
PostScript

printing interpolated shading 2-136
pow2 2-123
ppval 2-124
preallocation

matrix 2-686
prime numbers 2-125
primes 2-125
print 2-126
printdlg 2-140
printer drivers

GhostScript drivers 2-127
interploated shading 2-136
MATLAB printer drivers 2-127

printing
GUIs 2-135
interpolated shading 2-136
on MS-Windows 2-134
with a variable filename 2-138
with non-normal EraseMode 2-37, 2-207, 2-467,
2-519

printing tips 2-134
printopt 2-126
printpreview 2-141
prod 2-142
product

of array elements 2-142

profile 2-143
profile report 2-146
profreport 2-146
propedit 2-148, 2-149
Property Editor

interface 2-101
pseudoinverse 2-88
push buttons 2-563
pwd 2-150

Q
qmr 2-151
qr 2-155
QR decomposition 2-155

deleting a column from 2-159
inserting a column into 2-160

qrdelete 2-159
qrinsert 2-160
qrupdate 2-161
quad 2-164
quad8 2-164
quadl 2-167
quadrature 2-164
questdlg 2-169
quit 2-171
quitting MATLAB 2-171
quiver 2-173
quiver3 2-175
qz 2-177
QZ factorization 2-113, 2-177

R
radio buttons 2-563
rand 2-179
randn 2-181

Index

I-13

random
numbers 2-179, 2-181
permutation 2-183
sparse matrix 2-350, 2-351
symmetric sparse matrix 2-352

randperm 2-183
rank 2-184
rank of a matrix 2-184
rat 2-185
rational fraction approximation 2-185
rats 2-185
rbbox 2-188, 2-219
rcond 2-190
readasync 2-191

reading
data from files 2-529
formatted data from strings 2-367

README file 2-662
real 2-193
real numbers 2-193
realmax 2-194
realmin 2-195
rearranging arrays

removing first n singleton dimensions 2-303
removing singleton dimensions 2-366
reshaping 2-225
shifting dimensions 2-303
swapping dimensions 2-81

rearranging matrices
rotating 90˚ 2-251

record 2-196

rectint 2-212
RecursionLimit

Root property 2-244
reduced row echelon form 2-256
reducepatch 2-213
reducevolume 2-217

refresh 2-219
regression

linear 2-115
rehash 2-220
release 2-221
rem 2-222
remainder after division 2-222
repeatedly executing statements 2-667
replicating a matrix 2-223
repmat 2-223
reports

profile 2-146
reset 2-224
reshape 2-225
residue 2-227
residues of transfer function 2-227
return 2-230
reverse Cuthill-McKee ordering 2-494, 2-496
RGB, converting to HSV 2-231
rgb2hsv 2-231
rgbplot 2-232
ribbon 2-233
right-click and context menus 2-554
rmfield 2-236
rmpath 2-237
root 2-238
Root graphics object 2-238
root object 2-238
root, see rootobject 2-238
roots 2-247
roots of a polynomial 2-109-2-110, 2-247
rose 2-247, 2-248
rosser 2-250
rot90 2-251
rotate 2-252
rotate3d 2-254
Rotation, Text property 2-524

Index

I-14

rotations
Givens 2-159, 2-160
Jacobi 2-352

round
to nearest integer 2-255

round 2-255
roundoff error

characteristic polynomial and 2-110
partial fraction expansion and 2-228
polynomial roots and 2-247
sparse matrix conversion and 2-331

rref 2-256
rrefmovie 2-256
rsf2csf 2-258
rubberband box 2-188
run 2-260
runtime 2-261
runtime command 2-261

S
save 2-262, 2-265
save

serial port I/O 2-266

saveas 2-268
saveobj 2-271
saving

ASCII data 2-262
workspace variables 2-262

scatter 2-272
scatter3 2-274
schur 2-276
Schur decomposition 2-276
Schur form of matrix 2-258, 2-276
ScreenDepth, Root property 2-244
ScreenSize, Root property 2-245
script 2-278

search path 2-237
MATLAB’s 2-48
modifying 2-50
viewing 2-50

sec 2-279
secant 2-279
sech 2-279
Selected

Patch property 2-45
rectangle property 2-210
Root property 2-245
Surface property 2-472
Text property 2-524
Uicontextmenu property 2-560
Uicontrol property 2-579
Uimenu property 2-600

selecting areas 2-188
SelectionHighlight

Patch property 2-45
rectangle property 2-210
Surface property 2-472
Text property 2-524
Uicontextmenu property 2-560
Uicontrol property 2-579

selectmoveresize 2-281
semilogx 2-282
semilogy 2-282
send 2-284
Separator, Uimenu property 2-601
serial 2-285

serialbreak 2-287

set 2-288, 2-291
set

serial port I/O 2-292

set operations
difference 2-295
exclusive or 2-299

Index

I-15

union 2-610
unique 2-611

setdiff 2-295
setfield 2-296
setstr 2-298
setxor 2-299
shading 2-300
shading colors in surface plots 2-300
shiftdim 2-303
ShowHiddenHandles, Root property 2-245
shrinkfaces 2-304
shutdown 2-171
sign 2-308
signum function 2-308
Simpson’s rule, adaptive recursive 2-165
Simulink

version number, displaying 2-623
sin 2-309
sine 2-309
single 2-311
singular value

decomposition 2-184, 2-480
rank and 2-184

sinh 2-309
size 2-312
size

serial port I/O 2-314

size of array dimensions 2-312
size of fonts, see also FontSize property 2-526
size vector 2-225, 2-312
slice 2-315
sliders 2-564
SliderStep, Uicontrol property 2-580
smooth3 2-320
smoothing 3-D data 2-320
soccer ball (example) 2-496
sort 2-321

sorting
array elements 2-321
matrix rows 2-323

sortrows 2-323
sound

converting vector into 2-324, 2-325
files

reading 2-654
writing 2-656

playing 2-652
recording 2-655
resampling 2-652
sampling 2-655

sound 2-324, 2-325
source control systems

undo checkout 2-609
spalloc 2-326
sparse 2-327
sparse matrix

allocating space for 2-326
applying function only to nonzero elements of
2-336
diagonal 2-332
identity 2-335
random 2-350, 2-351
random symmetric 2-352
replacing nonzero elements of with ones 2-346
results of mixed operations on 2-328
solving least squares linear system 2-156
specifying maximum number of nonzero ele-
ments 2-327
visualizing sparsity pattern of 2-360

spaugment 2-329
spconvert 2-330
spdiags 2-332
SpecularColorReflectance

Patch property 2-45

Index

I-16

Surface property 2-472
SpecularExponent

Patch property 2-45
Surface property 2-473

SpecularStrength

Patch property 2-45
Surface property 2-473

speye 2-335
spfun 2-336
sph2cart 2-338
sphere 2-339
spherical coordinates 2-338
spinmap 2-341
spline 2-342
spones 2-346
spparms 2-347
sprand 2-350
sprandn 2-351
sprandsym 2-352
sprank 2-353
spreadsheets

loading WK1 files 2-674
loading XLS files 2-681
writing from matrix 2-675

sprintf 2-354
sqrt 2-362
sqrtm 2-363
square root

of a matrix 2-363
of array elements 2-362

squeeze 2-366
sscanf 2-367
stairs 2-370
standard deviation 2-373
startup 2-372
startup file 2-372
static text 2-564

std 2-373
stem 2-375
stem3 2-377
stopasync 2-379

stopwatch timer 2-535
storage

sparse 2-327
storage allocation 2-686
str2double 2-380
str2func 2-381
str2mat 2-382
str2num 2-383
strcat 2-384
strcmp 2-386
strcmpi 2-388
stream lines

computing 2-D 2-389
computing 3-D 2-391
drawing 2-393

stream2 2-389
stream3 2-391
strfind 2-414
String

Text property 2-524
Uicontrol property 2-580

string
comparing one to another 2-386
comparing the first n characters of two 2-419
converting to numeric array 2-383
converting to uppercase 2-616
dictionary sort of 2-323
finding first token in 2-426
searching and replacing 2-425

strings
converting to matrix (formatted) 2-367
writing data to 2-354

strings 2-415

Index

I-17

strjust 2-417
strmatch 2-418
strncmp 2-419
strncmpi 2-420
strread 2-421
strrep 2-425
strtok 2-426
struct 2-427
struct2cell 2-429
structure array

remove field from 2-236
setting contents of a field of 2-296

strvcat 2-430
Style

Uicontrol property 2-581
sub2ind 2-431
subplot 2-433
subsasgn 2-437
subscripts

in axis title 2-536
in text strings 2-527

subsindex 2-438
subspace 2-439
subsref 2-440
substruct 2-441
subvolume 2-442
sum

of array elements 2-444
sum 2-444
superiorto 2-445
superscripts

in axis title 2-537
in text strings 2-527

support 2-446
surf 2-447
surf2patch 2-451
Surface

converting to a patch 2-451
creating 2-453
defining default properties 2-202, 2-456
properties 2-461

surface 2-453
surfc 2-447
surfl 2-475
surfnorm 2-478
svd 2-480
svds 2-483
switch 2-485
symamd 2-487
symbfact 2-489
symbols in text 2-525
symmlq 2-490
symmmd 2-494
symrcm 2-496
system directory, temporary 2-501

T
Tag

Patch property 2-46
rectangle property 2-210
Root property 2-245
Surface property 2-473
Text property 2-527
Uicontextmenu property 2-560
Uicontrol property 2-581
Uimenu property 2-601

tan 2-499
tangent 2-499

hyperbolic 2-499
tanh 2-499
tempdir 2-501
tempname 2-502
temporary

Index

I-18

files 2-502
system directory 2-501

terminal 2-503
terminating MATLAB 2-171
tetrahedron

mesh plot 2-505
tetramesh 2-505
TeX commands in text 2-524
Text

creating 2-510
defining default properties 2-513
fixed-width font 2-520
properties 2-517

text
subscripts 2-527
superscripts 2-527

text 2-510
editing 2-99

textread 2-529
textwrap 2-534
tic 2-535
tiling (copies of a matrix) 2-223
time

elapsed (stopwatch timer) 2-535
title

with superscript 2-536, 2-537
title 2-536
toc 2-535
toeplitz 2-538
Toeplitz matrix 2-538
toggle buttons 2-564
token See also string 2-426
TooltipString

Uicontrol property 2-581
trace 2-539
trace of a matrix 2-539
trapz 2-540

treelayout 2-542
treeplot 2-543
triangulation

2-D plot 2-546
tril 2-544
trimesh 2-545
triplot 2-546
trisurf 2-548
triu 2-549
try 2-550
tsearch 2-551
tsearchn 2-552
Type

Patch property 2-46
rectangle property 2-210
Root property 2-245
Surface property 2-473
Text property 2-527
Uicontextmenu property 2-560
Uicontrol property 2-581
Uimenu property 2-601

type 2-553

U
UIContextMenu

Patch property 2-46
rectangle property 2-211
Surface property 2-473
Text property 2-528

UiContextMenu

Uicontrol property 2-581
Uicontextmenu

properties 2-557
Uicontextmenu

Uicontextmenu property 2-560
uicontextmenu 2-554

Index

I-19

Uicontrol
defining default properties 2-570
fixed-width font 2-574
properties 2-570
types of 2-562

uicontrol 2-562
uigetfile 2-584
uiimport 2-590
Uimenu

creating 2-591
defining default properties 2-595
properties 2-595

uimenu 2-591
uint* 2-602
uint8 2-602
uiputfile 2-603
uiresume 2-605
uisetcolor 2-606
uisetfont 2-607
uiwait 2-605
undocheckout 2-609
undocumented functionality 2-662
union 2-610
unique 2-611
unitary matrix (complex) 2-155
Units

Root property 2-246
Text property 2-527
Uicontrol property 2-582

unmkpp 2-614
unwrap 2-615
upper 2-616
upper triangular matrix 2-549
url

opening in Web browser 2-657
usejava 2-617
UserData

Patch property 2-46
rectangle property 2-211
Root property 2-246
Surface property 2-473
Text property 2-527
Uicontextmenu property 2-560
Uicontrol property 2-582
Uimenu property 2-601

V
Value, Uicontrol property 2-582
vander 2-618
Vandermonde matrix 2-117
var 2-619
varargout 2-620
variable numbers of M-file arguments 2-620
variables

graphical representation of 2-676
in workspace 2-676
listing 2-671
persistent 2-82
saving 2-262
sizes of 2-671

vectorize 2-622
vectorize 2-622
ver 2-623
version 2-625
version numbers

displaying 2-623
returned as strings 2-625

vertcat 2-626
VertexNormals

Patch property 2-46
Surface property 2-473

VerticalAlignment, Text property 2-528
Vertices, Patch property 2-47

Index

I-20

view
azimuth of viewpoint 2-629
coordinate system defining 2-629
elevation of viewpoint 2-629

view 2-628
viewmtx 2-631
Visible

Patch property 2-47
rectangle property 2-211
Root property 2-246
Surface property 2-474
Text property 2-528
Uicontextmenu property 2-561
Uicontrol property 2-583
Uimenu property 2-601

visualizing
sparse matrices 2-360

volumes
computing 2-D stream lines 2-389
computing 3-D stream lines 2-391
drawing stream lines 2-393
reducing face size in isosurfaces 2-304
reducing number of elements in 2-217

voronoi 2-637
Voronoi diagrams

multidimensional vizualization 2-641
two-dimensional vizualization 2-637

voronoin 2-641

W
waitbar 2-644
waitfor 2-646
waitforbuttonpress 2-647
warndlg 2-648
warning 2-649

warning message (enabling, suppressing, and dis-
playing) 2-649

waterfall 2-650
.wav files

reading 2-654
writing 2-656

waveplay 2-652
waverecord 2-655
wavplay 2-652

wavread 2-654
wavrecord 2-655

wavwrite 2-656
web 2-657
Web browser

pointing to file or url 2-657
weekday 2-659
well conditioned 2-190
what 2-660
whatsnew 2-662
which 2-663
while 2-667
white space characters, ASCII 2-426
whitebg 2-670
who 2-671
whos 2-671
wilkinson 2-673
Wilkinson matrix 2-333, 2-673
WK1 files

loading 2-674
writing from matrix 2-675

wk1read 2-674
wk1write 2-675
workspace

consolidating memory 2-11
predefining variables 2-372
saving 2-262
variables in 2-671

Index

I-21

viewing contents of 2-676
workspace 2-676

X
x-axis limits, setting and querying 2-678
XData

Patch property 2-47
Surface property 2-474

xlabel 2-677
xlim 2-678
XLS files

loading 2-681
xlsfinfo 2-680
xlsread 2-681
logical XOR 2-685
xor 2-685
XOR, printing 2-37, 2-207, 2-467, 2-519
xyz coordinates See Cartesian coordinates

Y
y-axis limits, setting and querying 2-678
YData

Patch property 2-47
Surface property 2-474

ylabel 2-677
ylim 2-678

Z
z-axis limits, setting and querying 2-678
ZData

Patch property 2-47
Surface property 2-474

zeros 2-686
zlabel 2-677

zlim 2-678
zoom 2-687

	Functions By Category
	Development Environment
	Starting and Quitting
	Command Window
	Getting Help
	Workspace, File, and Search Path
	Workspace
	File
	Search Path

	Programming Tools
	Editing and Debugging
	Source Control
	Profiling

	System
	Performance Improvement Tools and Techniques

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Operations and Manipulation
	Elementary Matrices and Arrays
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Data Analysis and Fourier Transforms
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Coordinate System Conversion
	Cartesian

	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Programming and Data Types
	Data Types
	Numeric
	Characters and Strings
	Structures
	Cell Arrays
	Data Type Conversion

	Arrays
	Array Operations
	Basic Array Information
	Array Manipulation
	Elementary Arrays

	Operators and Operations
	Special Characters
	Arithmetic Operations
	Bit-wise Operations
	Relational Operations
	Logical Operations
	Set Operations
	Date and Time Operations

	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Variables and Functions in Memory
	Control Flow
	Function Handles
	Object-Oriented Programming
	Error Handling
	MEX Programming

	File I/O
	Filename Construction
	Opening, Loading, Saving Files
	Low-Level File I/O
	Text Files
	Spreadsheets
	Microsoft Excel Functions
	Lotus123 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio Video Interleaved (AVI) Functions

	Images

	Graphics
	Basic Plots and Graphs
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter Plots

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Figure Windows
	Axes Operations

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	Working with Application Data
	Interactive User Input

	User Interface Objects
	Finding and Identifying Objects
	GUI Utility Functions
	Controlling Program Execution

	Alphabetical List of Functions
	pack
	pagedlg
	pagesetupdlg
	pareto
	partialpath
	pascal
	patch
	Patch Properties
	path
	pathtool
	pause
	pbaspect
	pcg
	pchip
	pcode
	pcolor
	pdepe
	pdeval
	peaks
	perms
	permute
	persistent
	pi
	pie
	pie3
	pinv
	planerot
	plot
	plot3
	plotedit
	plotmatrix
	plotyy
	pol2cart
	polar
	poly
	polyarea
	polyder
	polyeig
	polyfit
	polyint
	polyval
	polyvalm
	pow2
	ppval
	primes
	print, printopt
	printdlg
	printpreview
	prod
	profile
	profreport
	propedit
	propedit (activex)
	pwd
	qmr
	qr
	qrdelete
	qrinsert
	qrupdate
	quad, quad8
	quadl
	questdlg
	quit
	quiver
	quiver3
	qz
	rand
	randn
	randperm
	rank
	rat, rats
	rbbox
	rcond
	readasync
	real
	realmax
	realmin
	record
	rectangle
	rectangle properties
	rectint
	reducepatch
	reducevolume
	refresh
	rehash
	release (activex)
	rem
	repmat
	reset
	reshape
	residue
	return
	rgb2hsv
	rgbplot
	ribbon
	rmappdata
	rmfield
	rmpath
	root object
	Root Properties
	roots
	rose
	rosser
	rot90
	rotate
	rotate3d
	round
	rref
	rsf2csf
	run
	runtime
	save
	save (activex)
	save (serial)
	saveas
	saveobj
	scatter
	scatter3
	schur
	script
	sec, sech
	selectmoveresize
	semilogx, semilogy
	send (activex)
	serial
	serialbreak
	set
	set (activex)
	set (serial)
	setappdata
	setdiff
	setfield
	setstr
	setxor
	shading
	shiftdim
	shrinkfaces
	sign
	sin, sinh
	single
	size
	size (serial)
	slice
	smooth3
	sort
	sortrows
	sound
	soundsc
	spalloc
	sparse
	spaugment
	spconvert
	spdiags
	speye
	spfun
	sph2cart
	sphere
	spinmap
	spline
	spones
	spparms
	sprand
	sprandn
	sprandsym
	sprank
	sprintf
	spy
	sqrt
	sqrtm
	squeeze
	sscanf
	stairs
	startup
	std
	stem
	stem3
	stopasync
	str2double
	str2func
	str2mat
	str2num
	strcat
	strcmp
	strcmpi
	stream2
	stream3
	streamline
	streamparticles
	streamribbon
	streamslice
	streamtube
	strfind
	strings
	strjust
	strmatch
	strncmp
	strncmpi
	strread
	strrep
	strtok
	struct
	struct2cell
	strvcat
	sub2ind
	subplot
	subsasgn
	subsindex
	subspace
	subsref
	substruct
	subvolume
	sum
	superiorto
	support
	surf, surfc
	surf2patch
	surface
	Surface Properties
	surfl
	surfnorm
	svd
	svds
	switch
	symamd
	symbfact
	symmlq
	symmmd
	symrcm
	symvar
	tan, tanh
	tempdir
	tempname
	terminal
	tetramesh
	texlabel
	text
	Text Properties
	textread
	textwrap
	tic, toc
	title
	toeplitz
	trace
	trapz
	treelayout
	treeplot
	tril
	trimesh
	triplot
	trisurf
	triu
	try
	tsearch
	tsearchn
	type
	uicontextmenu
	uicontextmenu Properties
	uicontrol
	Uicontrol Properties
	uigetfile
	uiimport
	uimenu
	Uimenu Properties
	uint8, uint16, uint32
	uiputfile
	uiresume, uiwait
	uisetcolor
	uisetfont
	undocheckout
	union
	unique
	unix
	unmkpp
	unwrap
	upper
	usejava
	vander
	var
	varargin, varargout
	vectorize
	ver
	version
	vertcat
	view
	viewmtx
	volumebounds
	voronoi
	voronoin
	waitbar
	waitfor
	waitforbuttonpress
	warndlg
	warning
	waterfall
	wavplay
	wavread
	wavrecord
	wavwrite
	web
	weekday
	what
	whatsnew
	which
	while
	whitebg
	who, whos
	wilkinson
	wk1read
	wk1write
	workspace
	xlabel, ylabel, zlabel
	xlim, ylim, zlim
	xlsfinfo
	xlsread
	xor
	zeros
	zoom

	Index

